scholarly journals INFLUENCE OF ANNEALING TEMPERATURE ON THE STRUCTURAL AND OPTICAL PROPERTIES OF COPPER IODIDE THIN FILMS

2021 ◽  
Vol 03 (02) ◽  
pp. 100-108
Author(s):  
Zuheer. N MAJEED ◽  
Nadia Naeema DAHAHER ◽  
Ebtisam K ALWAN

Copper Iodide (CuI) nanoparticles with (250 nm) thickness have been prepared at RT on glass substrate using PLD technique with focused Nd:YAG laser beam at (800 mJ) with a frequency second radiation at (1064 nm) (pulse width 9 ns) repetition frequency (6 Hz), for 500 laser pulses incident on the target surface . The films annealed to different annealing temperatures (423K )and(523K). The structural and surface morphology properties of the deposited CuI thin films were examined by X-ray diffraction analysis (XRD) and Atomic force microscope (AFM). The X-ray diffraction show that structure is a cubic phase with (111) plane preferential orientation direction. AFM was used to examine and measure the morphology and average diameter for CuI thin films respectively. It is observed that the average nanoparticles size increases with increasing of annealing temperature. The optical measurements showed that CuI thin films have direct allowed energy gap transition and the energy gap (Eg) decreases from (3.2eV) to (2.8 eV) with increasing annealing temperatures from RT to (532 K) for all samples.

2012 ◽  
Vol 503-504 ◽  
pp. 620-624
Author(s):  
Yan Zou ◽  
Qiu Xiang Liu ◽  
Yan Ping Jiang ◽  
Xin Gui Tang

Bi3.4Nd0.6Ti3O12 (BNT) thin films have been prepared on Si (100) substrate by RF magnetron sputtering method. The crystalline structures were studied by X-ray diffraction. The surface of the films have been observed by SEM. The reflectivity was measured by n & k Analyzer 2000 with the wavelength from 190 to 900 nm. The optical constant, thickness and the forbidden band gap were fitted. The results showed that with the annealing temperatures raised from 600 to 750 °C, the reflectivity index decreased from 2.224 to 2.039, and the forbidden band gap decreased from 3.19 to 2.99 eV. The possible mechanism of the effect of annealing temperature on the optical properties was discussed.


2010 ◽  
Vol 434-435 ◽  
pp. 506-509
Author(s):  
Chia Cheng Huang ◽  
Fang Hsing Wang ◽  
Cheng Fu Yang ◽  
Hong Hsin Huang ◽  
Cheng Yi Chen ◽  
...  

W-TiO2 (W, tungsten) dual-layer thin films are deposited by RF magnetron sputtering onto glass substrates and annealed at 150oC~400oC for 4hrs. The crystal structure, morphology, and trans- mittance of annealed W-TiO2 dual-layer thin films are investigated by X-ray diffraction, FESEM, and UV-Vis spectrometer, respectively. The annealing temperatures have large effect on the properties of W-TiO2 dual-layer thin films. The band gap energy values of W-TiO2 dual-layer thin films are evaluated from (h)1/2 versus energy plots. The energy gap for un-annealed W-TiO2 dual-layer thin film is 3.16 eV. As the annealing temperature increases from 150oC to 400oC, the energy gap decreases from 3.16 eV to 3.10 eV.


this work, the study of optical properties of (As0.5Se0.5 doped with 1% Te) thin films which prepared by thermal vacuum evaporation on glass bases at (R.T) with (100±20) nm thickness deposition rate (1.6nm/s) and study effect of annealing at temperatures (Ta) (348,398,448) K for time (30min) on these properties. The X-ray diffraction technique showed that all prepared films are amorphous in structure at room temperature and annealing films at (348, 398, 448) K. The transmittance spectra of the prepared films fall within a wavelength range (500-1100) nm, and increasing the annealing temperature leads to a decreased in transmission, increased absorption coefficient, and shift of the absorption edge towards low photon energies. The optical measurements showed that the prepared films had an allowed indirect optical energy gap and were found to decrease with the increase of (Ta) within the range (R.T, 348,398,448) K. As indicated by the tails of the localized states, it was observed that they increased by increasing (Ta).


2021 ◽  
Vol 19 (5) ◽  
pp. 132-138
Author(s):  
Maan Abd-Alameer Salih ◽  
Q.S. Kareem ◽  
Mohammed Hadi Shinen

In this exploration Poly lactic corrosive (PLA) was orchestrated the ring-opening polymerization Poly lactic corrosive (PLA) blended with poly(3-hexylthiophene) (P3HT) which prepared by solution. Blends thin films Synthesis by spin coating technique and using Tetrahydrofuran (THF) as solvent. PLA powder was 'characterized by' 'X-ray' 'diffraction', '(FT-IR)'. pure Optical properties (PLA), (PLA)/P3HT blends thin films with different percentage of P3HT (0, 1, 2, and 3) wt% were investigated using UV-VS spectroscopy The results showed that the absorption, absorption coefficient, extinction coefficient and conductivity increase with increasing the rate of deformation P3HT, The energy gap decreases with increasing deformation.


Coatings ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 118 ◽  
Author(s):  
Ho-Yun Lee ◽  
Chi-Wei He ◽  
Ying-Chieh Lee ◽  
Da-Chuan Wu

Cu–Mn–Dy resistive thin films were prepared on glass and Al2O3 substrates, which wasachieved by co-sputtering the Cu–Mn alloy and dysprosium targets. The effects of the addition ofdysprosium on the electrical properties and microstructures of annealed Cu–Mn alloy films wereinvestigated. The composition, microstructural and phase evolution of Cu–Mn–Dy films werecharacterized using field emission scanning electron microscopy, transmission electronmicroscopy and X-ray diffraction. All Cu–Mn–Dy films showed an amorphous structure when theannealing temperature was set at 300 °C. After the annealing temperature was increased to 350 °C,the MnO and Cu phases had a significant presence in the Cu–Mn films. However, no MnO phaseswere observed in Cu–Mn–Dy films at 350 °C. Even Cu–Mn–Dy films annealed at 450 °C showedno MnO phases. This is because Dy addition can suppress MnO formation. Cu–Mn alloy filmswith 40% dysprosium addition that were annealed at 300 °C exhibited a higher resistivity of ∼2100 μΩ·cm with a temperature coefficient of resistance of –85 ppm/°C.


2019 ◽  
Vol 397 ◽  
pp. 118-124
Author(s):  
Linda Aissani ◽  
Khaoula Rahmouni ◽  
Laala Guelani ◽  
Mourad Zaabat ◽  
Akram Alhussein

From the hard and anti-corrosions coatings, we found the chromium carbides, these components were discovered by large studies; like thin films since years ago. They were pointed a good quality for the protection of steel, because of their thermal and mechanical properties for this reason, it was used in many fields for protection. Plus: their hardness and their important function in mechanical coatings. The aim of this work joins a study of the effect of the thermal treatment on mechanical and structural properties of the Cr/steel system. Thin films were deposited by cathodic magnetron sputtering on the steel substrates of 100C6, contain 1% wt of carbon. Samples were annealing in vacuum temperature interval between 700 to 1000 °C since 45 min, it forms the chromium carbides. Then pieces are characterising by X-ray diffraction, X-ray microanalysis and scanning electron microscopy. Mechanical properties are analysing by Vickers test. The X-ray diffraction analyse point the formation of the Cr7C3, Cr23C6 carbides at 900°C; they transformed to ternary carbides in a highest temperature, but the Cr3C2 doesn’t appear. The X-ray microanalysis shows the diffusion mechanism between the chromium film and the steel sample; from the variation of: Cr, Fe, C, O elements concentration with the change of annealing temperature. The variation of annealing temperature shows a clean improvement in mechanical and structural properties, like the adhesion and the micro-hardness.


2011 ◽  
Vol 383-390 ◽  
pp. 822-825
Author(s):  
Ping Luan ◽  
Jian Sheng Xie ◽  
Jin Hua Li

Using magnetron sputtering technology, the CuInSi thin films were prepared by multilayer synthesized method. The structure of CuInSi films were detected by X-ray diffraction(XRD), the main crystal phase peak is at 2θ=42.458°; The resistivity of films were measured by SDY-4 four-probe meter; The conductive type of the films were tested by DLY-2 conductivity type testing instrument. The results show that the annealing temperature and time effect on the crystal resistivity and crystal structure greatly.


2012 ◽  
Vol 151 ◽  
pp. 314-318
Author(s):  
Ching Fang Tseng ◽  
Cheng Hsing Hsu ◽  
Chun Hung Lai

This paper describes microstructure characteristics of MgAl2O4 thin films were deposited by sol-gel method with various preheating temperatures and annealing temperatures. Particular attention will be paid to the effects of a thermal treatment in air ambient on the physical properties. The annealed films were characterized using X-ray diffraction. The surface morphologies of treatment film were examined by scanning electron microscopy and atomic force microscopy. At a preheating temperature of 300oC and an annealing temperature of 700oC, the MgAl2O4 films with 9 μm thickness possess a dielectric constant of 9 at 1 kHz and a dissipation factor of 0.18 at 1 kHz.


2006 ◽  
Vol 514-516 ◽  
pp. 1613-1617
Author(s):  
J.C.P. Pina ◽  
Maria José Marques ◽  
J.M.M. dos Santos ◽  
A. Morão Dias

The thin and textured coatings present a double difficulty for characterization by conventional X-ray diffraction. Their shallow depth reduces the diffracted intensity and allows the interference of the underlying material. Frequently they present a crystallographic texture which limits the number of orientations that provide good intensity and induces anisotropy effects on their mechanical behavior. Reliable results can be determined using diffraction geometry of lowincidence angle. This paper describes the application of the technique to several films, characterized by thicknesses of the order of 1 μm and crystallographic textures. Examples are proposed of chromium films applied by PVD on molybdenum substrates, decorative electroplated coatings, and aluminum coatings used for interconnections in microelectronic circuits. The Cr films are 1.5 μm thick and exhibit a strong <100> fiber texture. The decorative coatings were studied both on the nickel undercoat and in the Cr top layer. Results are presented for chromium where tensile stresses and a <110> fiber texture were observed. The Al films are 1.0 μm thick. Some samples were heattreated at different annealing temperatures. Tensile stresses were always observed, which increase in the annealed samples.


2015 ◽  
Vol 1088 ◽  
pp. 81-85 ◽  
Author(s):  
T.N. Myasoedova ◽  
Victor V. Petrov ◽  
Nina K. Plugotarenko ◽  
Dmitriy V. Sergeenko ◽  
Galina Yalovega ◽  
...  

Thin SiO2ZrO2films were prepared, up to 0.2 μm thick, by means of the sol–gel technology and characterized by a Scanning electron microscopy and X-ray diffraction. It is shown the presence of monoclinic, cubic and tetragonal phases of ZrO2in the SiO2matrix. The crystallites sizes depend on the annealing temperature of the film and amount to 35 and 56 nm for the films annealed at 773 and 973 K, respectively. The films resistance is rather sensitive to the presence of NO2and O3impurity in air at lower operating temperatures in the range of 30-60°C.


Sign in / Sign up

Export Citation Format

Share Document