scholarly journals Immobilized Microalgae using Alginate for Wastewater Treatment

2021 ◽  
Vol 29 (3) ◽  
Author(s):  
Amanatuzzakiah Abdul Halim ◽  
Wan Nor Atikah Wan Haron

Organic and inorganic substances are released into the environment because of domestic, agricultural, and industrial activities which contribute to the pollution of water bodies. Removal of these substances from wastewater using conventional treatment involves high energy cost for mechanical aeration to provide oxygen for aerobic digestion system. During this process, the aerobic bacteria rapidly consume the organic matter and convert it into single cell proteins, water, and carbon dioxide. Alternatively, this biological treatment step can be accomplished by growing microalgae in the wastewater. Chlorella vulgaris immobilized in calcium alginate was used to study the removal efficiency of main nutrients in wastewater such as ammonium and phosphate that act as an important factor in microalgae growth. The immobilized cells demonstrated higher percentage of ammonium and phosphate removal of 83% and 79% respectively, compared to free-suspended cells (76% and 56%). COD removal recorded was 89% and 83% for immobilized cells and free-suspended cells, respectively. The kinetics parameters of nutrients removal for immobilized C. vulgaris in synthetic wastewater were also determined. The specific ammonium removal rates (RA) and phosphate removal rates (RP) for Chlorella vulgaris in synthetic wastewater were 8.3 mg.L-1day-1 and 7.9 mg.L-1day-1, respectively. On the other hand, the kinetic coefficient for each nutrient removal determined were kA = 0.0462 L.mg-1 day-1 NH4 and kP = 0.0352 L.mg-1 day-1 PO43-. This study proves the application of immobilized microalgae cells is advantageous to the wastewater treatment efficiency. Furthermore, optimization on the immobilization process can be conducted to further improve the nutrients removal rates which potentially can be applied in the large-scale wastewater treatment process.

2013 ◽  
Vol 666 ◽  
pp. 33-42 ◽  
Author(s):  
Meng Zi Wang ◽  
Zhi Wei Zhu ◽  
Wei Cao ◽  
Hong De Zhou ◽  
Yu Wu ◽  
...  

Electrochemical processing combined with the system of microalgaeChlorella vulgariswas used to treat the synthetic organic wastewater in this paper. The effect of wastewater concentration on the biomass growth and nutrients removal was investigated. Three levels of the wastewater concentrations were ranked as Low, Mid and High, respectively. After 2 h of electrolysis pretreatment and 10 d of microalgae cultivation, TOC, NH4-N, and TP concentrations in the group Low were reduced by 83.7%, 99.3% and 95.0%, respectively. TheChlorella vulgarisin the groups Mid and High without electrolysis pretreatment did not survive longer than 24 h, whereas it grown well in the wastewater pretreated by electrolysis. The dry weight (DW) ofChlorella vulgarisin the group Low with electrolysis pretreatment was increased from 0.048 g/l to 1.087 g/l by 10 d cultivation. Results indicate that electrolysis pretreatment for wastewater can provide appropriate conditions for the subsequent biological treatment and efficiently promote the biomass growth ofChlorella vulgaris.


2019 ◽  
Vol 70 (1) ◽  
pp. 283-285
Author(s):  
Elena Elisabeta Manea ◽  
Costel Bumbac

Increasing the efficiency and capacity of existing wastewater treatment plants can be carried out by using intensive biological processes. One of the currently studied biological solutions consists in using aerobic granular sludge in order to achieve both organics and nutrients removal simultaneously in one tank and with high efficiency. Aerobic granular sludge is currently used at full scale in sequential batch reactors, research for identifying the optimal solutions for continuous flow systems being carried out worldwide. The paper summarizes the results obtained for two continuous flow configurations with aerobic granular sludge, in terms of organics and nutrients removal for synthetic wastewater in laboratory conditions. Both experimental setups led to wastewater treatment efficiencies, with values ranging between 80 and 99% for COD, 85 and 99% for BOD5, 52 and 98% for NH4+ and 5 to 87% for TP.


2020 ◽  
Author(s):  
◽  
Yrielle Roets ◽  

South Africa’s freshwater resources, including rivers, man-made lakes and groundwater are under severe threat due to an ever-expanding population and economy, which is depleting these resources. The increase in population has a direct correlation with the increase in wastewater generated. The remaining fresh water resources need to be preserved therefore recycling of wastewater, to replenish our water supplies and preserve the environment, is a solution to the problem. For a developing country, it is important to use treatment methods that are cost effective and do not exert a negative impact on the environment, such as biological wastewater treatment options. One of the systems commonly used in biological wastewater treatment is the fluidized-bed bioreactor (FBBR) due to its advantages such as higher biomass concentration and a higher mass transfer thus resulting in a higher rate of biodegradation. This study focused on evaluating the efficacy of augmenting with Bacillus spp. to enhance the bioremediation of wastewater using a FBBR. Bacillus spp. used in this study were isolated from a municipal wastewater treatment plant (10 isolates) and the remaining three isolates were selected from the CSIR Bacillus database. The isolates (13 in total) were screened for 1) their ability grow in wastewater, 2) ability to reduce high concentrations of COD, ammonium, nitrates and phosphates in flask studies containing synthetic wastewater (SWW) and 3) ability to produce common enzymes such as amylase, cellulase, lipase and protease. Isolates showed varying bioremediation potential for different compounds analysed. Isolate B006 showed the highest phosphate removal rate (3.290 mg.L-1.h-1) where as D005 showed the highest growth rate (0.955 h-1), COD reduction rate (55 mg.L-1.h-1) and cellulase activity (5.485 mm) among all the isolates. Isolate D014 presented the highest ammonium removal rate (12.43 mg.L-1.h-1), amylase (5.00 mm) and protease (10.00 mm) activity whilst B001 displayed the highest nitrate removal rate (9.4 mg.L-1.h-1). The results for the individual assays were assessed and weighted in a matrix and the isolates that scored above 50% were selected for consortium studies. Four Bacillus spp. that scored above 50% in the scoring matrix were then evaluated for their ability to co-exist as a consortium. The consortium studies were then compared with results obtained for individual isolates. The selected Bacillus isolates were identified and assessed for their safety to the environment and to the end user. Identification was conducted using 16s rDNA sequencing and results showed that B006 identified as B. cereus, D005 as B. cereus and D014 as B. subtilis. Isolates, B006 and D005 were further assessed for enterotoxin production and the presence of anthrax virulent plasmids pX01 and pX02. After conducting the biosafety assays, the isolates were rendered safe for use. The isolates were then cryopreserved as spores in 25% glycerol and stored at -80 °C. The impact of the cryopreservation method and the storage conditions on the viability of the isolates was assessed after six months of storage and it was established that the isolates were still viable and that the method was adequate. The bioremediation potential of the consortium was further evaluated using a 17 L Pilot scale fluidised-bed bioreactor. The reactors were fed at three different flow rates of 1.5 L.h-1, 2 L.h-1 and 3 L.h-1 over steady state conditions (~3months). The results showed that the FBBR augmented with the selected Bacillus isolates, resulted in improved nutrient (COD, ammonium and phosphates) removal efficiencies compared to the non-bioaugmented control. The highest ammonium removal (62.8%) was observed at a flow rate of 1.5 L.h-1 (11.30 h retention time), whereby there was an overall 29.8% improvement in ammonia removal in comparison to the non-augmented control. Similarly, an overall improvement in phosphate (14.73%) was observed at a flow rate of 2 L.h-1 (8.48 h retention time) with 50% removal efficiency. The highest COD removal was observed at a flow rate of 1.5 L.h-1 (11.30 h retention time) whereby 74.5% COD was reduced with a 32.6% improvement when compared to the non-bioaugmented control. Our work has demonstrated the potential application of Bacillus as bioaugmentation agents to enhance wastewater treatment efficiency as a potential solution to water challenges in developing countries. This technology could also be utilized for addressing the challenges of a wider range of different effluents.


2020 ◽  
pp. 0958305X2095518
Author(s):  
Sandeep Panda ◽  
Srabani Mishra ◽  
Ata Akcil ◽  
Mehmet Ali Kucuker

Agricultural, domestic and industrial activities contribute in releasing several organic and inorganic substances into the water streams that result in environmental pollution. Biological treatment of industrial and domestic wastewater using Activated Sludge Nutrient Removal (ASNR), the conventional process, is well known; however, it is relatively expensive due to the requirement for high energy inputs. Microalgal applications have been gaining interest as they offer potential cost-effective measures for the treatment of wastewater in the peri-urban and rural areas. Such systems provide an interesting tertiary biological treatment method where valuable biomass is produced with simultaneous uptake of nutrients such as nitrogen and phosphorous with reduction in coliform bacteria, heavy metals, chemical and biochemical oxygen demand (COD & BOD) and the removal/degradation of xenobiotic compounds etc. This paper provides a systematic review on the current microalgal applications (phycoremediation) for wastewater treatment with advanced information on their role towards nutrient recovery and energy (biogas) production under the third generation biorefinery concept. The use of advanced algal pond systems for wastewater treatment including pollutant degradation, microalgal cultivation and employing such facilities for biogas production in view of technology applications is emphasized. This inter-linked network indicating microalgal role into the Nutrient-Energy-Wastewater nexus with future directions and concluding remarks are discussed.


2019 ◽  
Vol 18 (9) ◽  
pp. 2023-2034 ◽  
Author(s):  
Agnieszka A. Pilarska ◽  
Krzysztof Pilarski ◽  
Boguslawa Waliszewska ◽  
Magdalena Zborowska ◽  
Kamil Witaszek ◽  
...  

2013 ◽  
Vol 12 (12) ◽  
pp. 2371-2383
Author(s):  
Krishnaswamy Usharani ◽  
Perumalsamy Lakshmanaperumalsamy ◽  
Muthusamy Muthukumar

1990 ◽  
Vol 22 (7-8) ◽  
pp. 153-160 ◽  
Author(s):  
Pradeep Kumar ◽  
R. J. Garde

With increasing stress on existing wastewater treatment systems, it is necessary either to upgrade the treatment unit(s) or install an entirely new treatment plant. Obviously, the upgrading is preferred over the alternative of having a new system. Keeping this in view, in the present project, an attempt has been made to explore the possibility of upgrading existing facultative ponds using water hyacinth. Bench-scale batch studies were designed to compare the performance of hyacinth treatment system with facultative ponds. Investigations were carried out with synthetic wastewater having COD in the range of 32.5-1090 mg/l. The efficiency of COD removal in water hyacinth ponds was 15-20 percent more than the facultative ponds. Based on the results, an empirical model has been proposed for COD removal kinetics. In the second phase of the project a hyacinth pond was continuously operated. BOD, COD, TS, TN, TP, pH, and DO were regularly monitored. However, the DO of the effluent from hyacinth treatment system was considerably reduced. Effluent should be aerated before it is discharged. The results indicate that the existing facultative ponds can be stalked with water hyacinth to improve their performance as well as hyacinth treatment systems can be installed to support the conventional treatment.


1992 ◽  
Vol 25 (4-5) ◽  
pp. 203-209 ◽  
Author(s):  
R. Kayser ◽  
G. Stobbe ◽  
M. Werner

At Wolfsburg for a load of 100,000 p.e., the step-feed activated sludge process for nitrogen removal is successfully in operation. Due to the high denitrification potential (BOD:TKN = 5:1) the effluent total nitrogen content can be kept below 10 mg l−1 N; furthermore by some enhanced biological phosphate removal about 80% phosphorus may be removed without any chemicals.


Sign in / Sign up

Export Citation Format

Share Document