Microalgal potential for nutrient-energy-wastewater nexus: Innovations, current trends and future directions

2020 ◽  
pp. 0958305X2095518
Author(s):  
Sandeep Panda ◽  
Srabani Mishra ◽  
Ata Akcil ◽  
Mehmet Ali Kucuker

Agricultural, domestic and industrial activities contribute in releasing several organic and inorganic substances into the water streams that result in environmental pollution. Biological treatment of industrial and domestic wastewater using Activated Sludge Nutrient Removal (ASNR), the conventional process, is well known; however, it is relatively expensive due to the requirement for high energy inputs. Microalgal applications have been gaining interest as they offer potential cost-effective measures for the treatment of wastewater in the peri-urban and rural areas. Such systems provide an interesting tertiary biological treatment method where valuable biomass is produced with simultaneous uptake of nutrients such as nitrogen and phosphorous with reduction in coliform bacteria, heavy metals, chemical and biochemical oxygen demand (COD & BOD) and the removal/degradation of xenobiotic compounds etc. This paper provides a systematic review on the current microalgal applications (phycoremediation) for wastewater treatment with advanced information on their role towards nutrient recovery and energy (biogas) production under the third generation biorefinery concept. The use of advanced algal pond systems for wastewater treatment including pollutant degradation, microalgal cultivation and employing such facilities for biogas production in view of technology applications is emphasized. This inter-linked network indicating microalgal role into the Nutrient-Energy-Wastewater nexus with future directions and concluding remarks are discussed.

2008 ◽  
Vol 57 (8) ◽  
pp. 1287-1293 ◽  
Author(s):  
A. Jobbágy ◽  
G. M. Tardy ◽  
Gy. Palkó ◽  
A. Benáková ◽  
O. Krhutková ◽  
...  

The purpose of the experiments was to increase the rate of activated sludge denitrification in the combined biological treatment system of the Southpest Wastewater Treatment Plant in order to gain savings in cost and energy and improve process efficiency. Initial profile measurements revealed excess denitrification capacity of the preclarified wastewater. As a consequence, flow of nitrification filter effluent recirculated to the anoxic activated sludge basins was increased from 23,000 m3 d−1 to 42,288 m3 d−1 at an average preclarified influent flow of 64,843 m3 d−1, Both simulation studies and microbiological investigations suggested that activated sludge nitrification, achieved despite the low SRT (2–3 days), was initiated by the backseeding from the nitrification filters and facilitated by the decreased oxygen demand of the influent organics used for denitrification. With the improved activated sludge denitrification, methanol demand could be decreased to about half of the initial value. With the increased efficiency of the activated sludge pre-denitrification, plant effluent COD levels decreased from 40–70 mg l−1 to < 30–45 mg l−1 due to the decreased likelihood of methanol overdosing in the denitrification filter


In this paper three sustainable approaches are made in waste management option. Firstly primary treated domestic sewage is treated by aquatic macrophytes using duckweed, water hyacinth and water lettuce. Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Suspended Solids (TSS), Total Dissolved Solids (TDS), Phosphate, Nitrates are tested before and after. Result indicates in terms of water quality, almost all three plants shows same removal efficiencies. BOD and TSS removal efficiency is attained more than 95%. COD and TDS removal is reached upto 50% for almost all plants. Secondly the used aquatic macrophytes for wastewater treatment is again used for generation of biogas (water lettuce unit, duckweed unit, water lettuce unit). In addition to three aquatic macrophytes, sludge is collected from aquatic macrophyte unit for generation of biogas. Comparison is made with conventional cow dung biogas unit. Result indicates water lettuce and duckweed produce biogas at earlier stage itself and water hyacinth takes some time for starting of biogas production. This may be due to the structure and texture causes some time for decomposition. Sludge gives maximum biogas generation among all experimental setup. Also in this study cow dung did not give biogas more may be due to poor blend ratio of cow dung with water is one of the reason.


2021 ◽  
Vol 3 (2) ◽  
pp. 130-140
Author(s):  
Maria Diana Puiu ◽  

The food industry wastewater is known to present a high organic matter content, due to specific raw materials and processing activities. Even if these compounds are not directly toxic to the environment, high concentrations in effluents could represent a source of pollution as discharges of high biological oxygen demand may impact receiving river's ecosystems. Identifying the main organic contaminants in wastewater samples represents the first step in establishing the optimum treatment method. The sample analysis for the non-target compounds through the GC-MS technique highlights, along with other analytical parameters, the efficiency of the main physical and biological treatment steps of the middle-size Wastewater Treatment Plant (WWTP). Long-chain fatty acids and their esters were the main abundant classes of non-target identified compounds. The highest intensity detection signal was reached by n-hexadecanoic acid or palmitic acid, a component of palm oil, after the physical treatment processes with dissolved air flotation, and by 1-octadecanol after biological treatment.


2021 ◽  
Vol 941 (1) ◽  
pp. 012001
Author(s):  
Basamykina Alena ◽  
Kurkina Ekaterina ◽  
Kameristaya Maria

Abstract Biological treatment methods are used to remove organic and some inorganic substances from wastewater using the simplest organisms that use these substances for nutrition, breaking them down using cellular processes. The article deals with the aerobic, anaerobic and anoxic stages of biological wastewater treatment. Their differences are explained and the best way to use biological processes is analyzed according to the type of industry/production. At wastewater treatment plants, anaerobic treatment is often used at first to remove a significant part of organic substances from wastewater before sending them for further aerobic treatment. Aerobic treatment is effective for various types of wastewater, especially with lower biochemical oxygen demand (BOD) and chemical oxygen demand (COD). A comparative analysis of wastewater composition from food, oil and gas processing, pharmaceutical and pulp and paper industries was carried out. In the presence of organic compounds, the technology is chosen depending on the total organic matter content or the total COD content, which characterizes the total organic matter in water. A combination of anaerobic and aerobic methods is possible, if a discharge into the sewer system or into water bodies is required. The grounds for the application of biological wastewater treatment of these industries are given.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2392 ◽  
Author(s):  
Marcin Dębowski ◽  
Marcin Zieliński ◽  
Marta Kisielewska ◽  
Joanna Kazimierowicz

The aim of this study was the performance evaluation of anaerobic digestion of dairy wastewater in a multi-section horizontal flow reactor (HFAR) equipped with microwave and ultrasonic generators to stimulate biochemical processes. The effects of increasing organic loading rate (OLR) ranging from 1.0 g chemical oxygen demand (COD)/L·d to 4.0 g COD/L·d on treatment performance, biogas production, and percentage of methane yield were determined. The highest organic compounds removals (about 85% as COD and total organic carbon—TOC) were obtained at OLR of 1.0–2.0 g COD/L·d. The highest biogas yield of 0.33 ± 0.03 L/g COD removed and methane content in biogas of 68.1 ± 5.8% were recorded at OLR of 1.0 g COD/L·d, while at OLR of 2.0 g COD/L·d it was 0.31 ± 0.02 L/COD removed and 66.3 ± 5.7%, respectively. Increasing of the OLR led to a reduction in biogas productivity as well as a decrease in methane content in biogas. The best technological effects were recorded in series with an operating mode of ultrasonic generators of 2 min work/28 min break. More intensive sonication reduced the efficiency of anaerobic digestion of dairy wastewater as well as biogas production. A low nutrient removal efficiency was observed in all tested series of the experiment, which ranged from 2.04 ± 0.38 to 4.59 ± 0.68% for phosphorus and from 9.67 ± 3.36 to 20.36 ± 0.32% for nitrogen. The effects obtained in the study (referring to the efficiency of wastewater treatment, biogas production, as well as to the results of economic analysis) proved that the HFAR can be competitive to existing industrial technologies for food wastewater treatment.


2003 ◽  
Vol 47 (1) ◽  
pp. 271-276 ◽  
Author(s):  
Y. Zhang ◽  
H. Shi ◽  
Y. Qian

Printing ink wastewater is usually very difficult to treat biologically and its chemical oxygen demand (COD) far exceeds standards of discharge. The COD in wastewater is usually 3,000 to 8,000 mg/L after flocculation and sedimentation. Herein, a strain of bacterium was isolated from the sludge and identified as Bacillus sp. and utilized to treat printing ink wastewater. The application of bacteria to degrade printing ink in wastewater is discussed in this paper. The influence of N and P sources on COD removal, and COD removal in combination with glucose was also discussed. More than 85 per cent of the COD could be removed using the proposed biological process. A novel internal airlift loop bioreactor with bacteria immobilized onto ceramic honeycomb support was used for the wastewater treatment.


2018 ◽  
Vol 77 (9) ◽  
pp. 2242-2252 ◽  
Author(s):  
M. Vaccari ◽  
P. Foladori ◽  
S. Nembrini ◽  
F. Vitali

Abstract One of the largest surveys in Europe about energy consumption in Italian wastewater treatment plants (WWTPs) is presented, based on 241 WWTPs and a total population equivalent (PE) of more than 9,000,000 PE. The study contributes towards standardised resilient data and benchmarking and to identify potentials for energy savings. In the energy benchmark, three indicators were used: specific energy consumption expressed per population equivalents (kWh PE−1 year−1), per cubic meter (kWh/m3), and per unit of chemical oxygen demand (COD) removed (kWh/kgCOD). The indicator kWh/m3, even though widely applied, resulted in a biased benchmark, because highly influenced by stormwater and infiltrations. Plants with combined networks (often used in Europe) showed an apparent better energy performance. Conversely, the indicator kWh PE−1 year−1 resulted in a more meaningful definition of a benchmark. High energy efficiency was associated with: (i) large capacity of the plant, (ii) higher COD concentration in wastewater, (iii) separate sewer systems, (iv) capacity utilisation over 80%, and (v) high organic loads, but without overloading. The 25th percentile was proposed as a benchmark for four size classes: 23 kWh PE−1 y−1 for large plants > 100,000 PE; 42 kWh PE−1 y−1 for capacity 10,000 < PE < 100,000, 48 kWh PE−1 y−1 for capacity 2,000 < PE < 10,000 and 76 kWh PE−1 y−1 for small plants < 2,000 PE.


2013 ◽  
Vol 3 (4) ◽  
pp. 381-391 ◽  
Author(s):  
Youssef Abarghaz ◽  
Khiyati Mohammed El Ghali ◽  
Mustapha Mahi ◽  
Christine Werner ◽  
Najib Bendaou ◽  
...  

An anaerobic digestion pilot system was implemented in June 2010 in the Moroccan village of Dayet Ifrah. The input material consists of toilet wastewater and cattle manure. Biogas is produced under anaerobic conditions. It is used for heating and cooking. This biogas system could be an useful sanitation technology due to its ability to treat wastewater. The biogas system was monitored over 86 days in summer 2012 to measure gas production. The average gas production recorded was about 1,870 l per day. This amount is sufficient for a farming family composed of 17 people. Our work seeks to find the most appropriate formula to predict biogas production under Moroccan conditions. We compared and ranked different formulas by applying principal component analysis and the ELECTRE III method. The variables studied were the chemical oxygen demand reduction and biogas volume measurements. The results show that the formula of Vedrenne is the most appropriate equation to predict biogas production in Moroccan rural areas (see Vedrenne (2007) ‘Study of Anaerobic Degradation Processes and Methane Production During Storage of Manure’. Environmental Science Thesis. ENSA, Rennes).


2016 ◽  
Vol Volume 112 (Number 7/8) ◽  
Author(s):  
Patrick Mukumba ◽  
Golden Makaka ◽  
Sampson Mamphweli ◽  
◽  
◽  
...  

Abstract Biogas can provide a solution to some of South Africa’s energy needs, especially in rural areas of Eastern Cape Province that have plentiful biogas substrates from donkeys, goats, sheep, cattle and chicken. We investigated the effectiveness of donkey dung for biogas production using a designed and constructed cylindrical field batch biogas digester. The donkey dung was collected from the University of Fort Hare’s Honeydale Farm and was analysed for total solids, volatile solids, total alkalinity, calorific value, pH, chemical oxygen demand and ammonium nitrogen (NH4-N). The biogas composition was analysed using a gas analyser. We found that donkey dung produced biogas with an average methane yield of 55% without co-digesting it with other wastes. The results show that donkey dung is an effective substrate for biogas production.


2019 ◽  
Vol 80 (8) ◽  
pp. 1524-1537
Author(s):  
Rana Muhammad Asif Kanwar ◽  
Zahid Mahmood Khan ◽  
Hafiz Umar Farid

Abstract The present research was conducted to assess the feasibility of biological treatment of a typical wastewater (WW) stream in Multan, Pakistan, using daily trends of WW characteristics and to design a wastewater treatment (WWT) system for that stream. The pH (5.8–6.2), temperature (24–30 °C), biological oxygen demand (BOD5: 128–265 mg/L), ultimate BOD (BODu: 227–438 mg/L), BOD/total Kjeldahl nitrogen (BOD5/TKN:5.9–11.2), BODu/BOD5 (1.6–2.0), carbonaceous BODu/nitrogenous BODu (CBODu/NBODu:1.6–2.8) of the WW was found to support the biological WWT. The inclusion of NBOD also indicated the need for nitrification-denitrification. The linear regression analysis of volatile suspended solids (VSS) with total suspended solids (TSS) indicated the high content of organic solids, which also made the WW suitable for biological treatment. The BOD/COD (chemical oxygen demand) <0.8 indicated the requirement for biomass acclimation. The major process units of the WWT system developed included a primary clarifier, cascade aeration, trickling filter, adsorption filter and chlorination contact tank. During the validation of design procedures, considerable removal of TSS (91%), TDS (46%), BOD5 (88%), COD (87%) was observed over the 15 week operational period of the secondary WWT system. The WWT system developed was appropriate as a sustainable WWT system that consumed less energy and had lower operational costs.


Sign in / Sign up

Export Citation Format

Share Document