scholarly journals Incorporation of Rice Husk Ash with Palm Oil Mill Wastes in Enhancing Physicochemical Properties of the Compost

Author(s):  
Nur Eliza Badrul Hisham ◽  
Nor Hanuni Ramli

Rice husk ash (RHA), palm oil mill effluent (POME) sludge and decanter cake can be utilized together in compost production to minimize the environmental pollution. This study aims to evaluate the role of different composition of RHA in enhancing the physicochemical properties of palm oil-based compost. The composts were prepared by mixing different composition of RHA, in the range of 0% to 30%, with 1:1 (wt/wt) weight ratio of POME sludge and decanter cake. The moisture content, water holding capacity, pH, nitrogen (N), phosphorus (P), potassium (K), silica (Si) contents, and C:N ratio of raw materials were analyzed by using CHNS and WDXRF analyzers. The composting process was conducted in compost containers for 60 days, in which the temperature and pH of the composts were monitored daily. The finished composts were analyzed for physicochemical properties as same as raw materials. For physical properties of finished composts, RHA30 had the highest moisture content and water holding capacity which was 1.9 to 23.8% (wt/wt) and 4.2 to 26.8% higher compared to other finished composts, respectively. For chemical properties, the highest N and P contents were recorded by control compost. However, for K and Si content, the elements were found to be higher in RHA10 and RHA30, respectively, compared to other finished composts. Overall, RHA, POME sludge and decanter cake combination in compost production can create a well-balanced condition for the compost to perform effectively as an organic fertilizer. The addition of 5% to 10% RHA in compost formulation made from palm oil mill wastes is suggested to achieve the desirable condition.

2019 ◽  
Vol 19 (4) ◽  
pp. 967
Author(s):  
Nur Ezyan Badrul Hisham ◽  
Nor Hanuni Ramli

Recently, the increase in demand for rice has led to the numerous availabilities of rice husks (RH) in Malaysia. RH is being utilized as industrial fuel to generate electricity through incineration process in the boiler. During the incineration process, rice husk ash (RHA) is being produced as the by-product and caused environmental pollution. RHA has the potential of being utilized as organic fertilizer through a composting process to control environmental pollution. Thus, this study investigated the effect of different compositions on the duration of the composting process and physicochemical properties of compost. The raw materials and finished compost were analyzed in terms of elemental composition, pH, water holding capacity, and moisture content. The obtained results showed that addition of 7.5 wt.% of RHA can improve composting process due to the presence of silica which can maintain the moisture content within 50–60% and water holding capacity of compost at the range of 61-73%. The results of this study have clearly shown the potential of the compositing process in treating RHA. However, further studies are required to provide a deeper understanding of the mechanisms involved in facilitating the development of an optimum treatment system applicable to the industry.


2019 ◽  
Vol 8 (1) ◽  
pp. 6-10
Author(s):  
Andry Hammonang Sianturi ◽  
Immanuel Putra Riau Hutagaol ◽  
Bambang Trisakti ◽  
Irvan

The process of composting empty fruit bunches and Azolla microphylla by asistance active organic liquid fertilizer was an alternative in the utilization of solid waste produced from the palm oil mill. This research was to produce good quality compost from a mixture of 60%:40% weight empty fruit bunches and azolla microphylla with asistance active organic liquid fertilizer. The composting process is done by entering empty fruit bunches and Azolla microphylla on the composter and added active organic liquid fertilizer to achieve the moisture content  value of 55%-65%. During composting, the moisture content was kept on the optimum condition by adding the active organic liquid fertilizer. The parameters analyzed were temperature, moisture content, pH, water holding capacity, electrical conductivity, and C-N. The result showed that compost can be produced within ± 30 days with characteristic of pH 8.8; Moisture Content 59,92%, Water Holding Capacity 86%,  C 27.24%,  N 1.53


2019 ◽  
Vol 139 ◽  
pp. 111482 ◽  
Author(s):  
Nurhamieza Md Huzir ◽  
Md Maniruzzaman A. Aziz ◽  
S.B. Ismail ◽  
Nik Azmi Nik Mahmood ◽  
N.A. Umor ◽  
...  

2019 ◽  
Vol 6 (1) ◽  
pp. 20
Author(s):  
Abdul Rahman Ollong ◽  
Rizki Arizona ◽  
Rusli Badaruddin

ABSTRAKPenelitian ini bertujuan untuk mengetahui pengaruh penambahan minyak buah merah (MBM) pada pakan terhadap kualitas fisik daging ayam broiler. Seratus ekor ayam broiler umur sehari (DOC) ditempatkan pada lima kelompok perlakuan pakan yang berbeda, yaitu: P1 (pakan kontrol/tanpa penambahan minyak), P2 (2% MBM), P3 (4% MBM), P4 (6% MBM) dan P5 (6% Minyak kelapa sawit). Setiap kelompok perlakuan terdiri dari empat ulangan masing-masing dengan lima ekor. Ayam broiler dipelihara selama 35 hari. Rancangan yang digunakan adalah Rancangan Acak Lengkap (RAL) dengan analisis variansi pola searah dan diuji lanjut dengan Duncan’s New Multiple Range Test (DMRT). Hasil penelitian menunjukkan bahwa semua variable yang diamati menunjukkan adanya pengaruh nyata (P<0,05) terhadap perlakuan yang diberikan. Dari hasil penelitian ini dapat disimpulkan bahwa penggunaan minyak buah merah (MBM) dalam pakan mampu memberikan pengaruh terhadap pH Daging, Daya Ikat Air (DIA), susut masak dan keempukan daging ayam broiler.Kata kunci : daging ayam broiler, daya ikat air, keempukan daging, pH daging, susut masakABSTRACT The experiment was conducted to study the effect of red fruit oil (RFO) onphysical quality  of broiler chicken. One hundred day old chicken (DOC) were placed in four groups of different treatments, of from levels of RFO (P1 (diet without addition of RFO), P2 (2% RFO), P3 (4% RFO) and P4 (6% RFO) and P5 (6% Palm oil)). The treatment group consisted of fivereplications with five birds each. Broiler chickens were reared for 35 days. Statistical analysis used Completely Randomized Design (CRD) and followed by Duncan’s New Multiple Range Test (DMRT). The results showed that the pH value, moisture content, water holding capacity, and cooking loss was significant differences. It could be concluded that the addition of red fruit oil in the diet give effect  of broiler chicken meat.Keywords: broiler meat, cooking loss, moisture content, pH value, water holding capacity


2019 ◽  
Vol 7 (2) ◽  
Author(s):  
Dendi Prayoga ◽  
. Dirhamsyah ◽  
. Nurhaida

This research aimed to examine the physical and mechanical properties of particle boards based on the composition of raw materials and adhesive content and know the treatment of the composition of raw materials and the best adhesive content and meet the standard JIS A 5908-2003. The research was conducted at Wood Workshop Laboratory, Wood Processing Laboratory Faculty of Forestry,Tanjungpura University and Laboratory of PT. Duta Pertiwi Nusantara Pontianak. The adhesive used is Urea Formaldehyde with 52% Solid Content. Comparison of the composition of rice husks and sengon varies namely rice husk 50%: sengon 50%, rice husk 60%: sengon 40% and rice husk 70%: sengon 30%  and variations in the levels of UF adhesives, namely 14% and 16%, with target density 0,7 gr/cm3. The particleboard was 30 cm x 30 cm x 1 cm Pressing at temperature 140oC for 8 minutes, with  pressure of 25 kg/cm2. The research results of the study of density and moisture content meet the standards JIS A 5908-2003. The best particle values of rice husk and sengon  with composition a ratio of  rice husk 50%: sengon 50% , 16% adhesive content  16%, with density value of  0,7072 gr/cm3, moisture content 9,1949 %, thick development 12,3210 %, water absorption 68,8270 %, MOE 12110,7273 kg/cm2, MOR 161,0025 kg/cm2, firmness sticky 1,9320 kg/cm2, screw holding strength 62,3124 kg.Keywords : adhesive, composition, particle board, rice husk, sengon


2019 ◽  
Vol 964 ◽  
pp. 193-198
Author(s):  
Mabrur Zanata ◽  
Sekar Tri Wulan Amelia ◽  
Muhammad Ridlo Mumtazy ◽  
Firman Kurniawansyah ◽  
Achmad Roesyadi

Bio jet fuel becomes one of the feasible solutions for jet fuel inadequate supply in Indonesia. However, study in this field by far has been limited. In this study, bio jet fuel was synthesized from Crude Palm Oil (CPO) by Hydroprocessed Esters and Fatty Acid (HEFA) facilitated by Ni-Mo/SiO2 catalyst, in which the support was derived from rice husk ash. The study focused on investigating the influence of catalyst-CPO mass ratio and temperature of the catalytic process. Experimental works consisted of silica-based catalyst preparation via impregnation method, followed by sample assessments. Catalytic reactions were conducted at 20-50 bars, with temperature of reaction 300°C and 400°C. Catalyst performance were evaluated from crystallinity, composition, and activity in the reaction. Catalyst characterization shows an amorphous structured with high dispersion of Ni-Mo in rice husk ash have been produced. The HEFA process successfully obtained bio jet fuel (C10-C15 hydrocarbons) with yield and selectivity of 45.17% and 45.46%, respectively. Overall, a systematic approach shows rice husk ash has potential to be developed as a catalyst support for bio jet fuel production from crude palm oil.


2019 ◽  
Vol 798 ◽  
pp. 364-369 ◽  
Author(s):  
Khemmakorn Gomonsirisuk ◽  
Parjaree Thavorniti

The aim of this work is to study the feasibility of preparation of fly ash based geopolymer using sodium water glass from agricultural waste as alternative activators. Rice husk ash and bagasse ash were used as raw materials for producing sodium water glass solution. The sodium water glass were produced by mixing rice husk ash and bagasse ash with NaOH in ball mill and boiling. The prepared sodium water glass were analyzed and used in geopolymer preparation process. The geopolymer paste were prepared by adding the obtained water glass and NaOH with fly ash. After cured at ambient temperature for 7 days, mechanical properties were investigated. Bonding and phases of the geopolymer were also characterized. The geopolymer from rice husk ash presented highest compressive strength about 23 MPa while the greatest for bagasse ash was about 16 MPa.


Forests ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1284
Author(s):  
Brendan Nicholas Marais ◽  
Christian Brischke ◽  
Holger Militz ◽  
Johann Hinrich Peters ◽  
Lena Reinhardt

This article presents the results from two separate studies investigating the decay of wood in ground contact using adapted versions of laboratory-based terrestrial microcosm (TMC) tests according to CEN/TS 15083-2:2005. The first study (A) sought to isolate the effect of soil water-holding capacity (WHCsoil [%]) and soil moisture content (MCsoil [%WHCsoil]) on the decay of five commercially important wood species; European beech (Fagus sylvatica), English oak heartwood (Quercus robur), Norway spruce (Picea abies), Douglas-fir heartwood (Pseudotsuga menziesii), and Scots pine sapwood (Pinus sylvestris), while keeping soil temperature (Tsoil) constant. Combinations of soil mixtures with WHCsoil of 30%, 60%, and 90%, and MCsoil of 30%, 70%, and 95%WHCsoil were utilized. A general trend showed higher wood decay, measured in oven-dry mass loss (MLwood [%]), for specimens of all species incubated in soils with WHCsoil of 60% and 90% compared to 30%. Furthermore, drier soils (MCsoil of 30 and 70%WHCsoil) showed higher MLwood compared to wetter soils (95%WHCsoil). The second study (B) built on the first’s findings, and sought to isolate the effect of Tsoil and MCsoil on the decay of European beech wood, while keeping WHCsoil constant. The study used constant incubation temperature intervals (Tsoil), 5–40 °C, and alternating intervals of 10/20, 10/30, and 20/30 °C. A general trend showed drier MCsoil (60%WHCsoil), and Tsoil of 20–40 °C, delivered high wood decay (MLwood > 20%). Higher MCsoil (90%WHCsoil) and Tsoil of 5–10 °C, delivered low wood decay (MLwood < 5%). Alternating Tsoil generally delivered less MLwood compared to their mean constant Tsoil counterparts (15, 20, 25 °C). The results suggest that differences in wood species and inoculum potential (WHCsoil) between sites, as well as changes in MCsoil and Tsoil attributed to daily and seasonal weather patterns can influence in-ground wood decay rate.


Sign in / Sign up

Export Citation Format

Share Document