scholarly journals Modeling, Control and Design of DC-DC Boost Converter for Grid Connected Photo-Voltaic Applications

Author(s):  
Suneel Raju Pendem ◽  
Bidyadhar Subudhi

This article presents a design and development method of a DC-DC boost converter with constant output voltage. This system has a nonlinear dynamic behavior, as it works in switch-mode. Moreover, it is exposed to significant variations which may take this system away from nominal conditions, due to changes on the load or on the line voltage at the input. From a fluctuating or a variable input voltage, boost converter is able to step up the input voltage to a higher constant dc output voltage using the Non-linear feedback controllers such as PID controller and the Sliding Mode controllers. By this technique, the output of the converter is measured and compared with a reference voltage. The differential of the compared value will be used to produce a pulse width modulation signal to control switch in the boost converter. Simulation results describe the performance of the proposed design.

DC-DC converters are playing an important role in designing of Electric Vehicles, integration of solar cells and other DC applications. Contemporary high power applications use multilevel converters that have multi stage outputs for integrating low voltage sources. Conventional DC-DC converters use single source and have complex structure while using for Hybrid Energy Systems. This paper proposes a multi-input, multi-output DC-DC converter to produce constant output voltage at different input voltage conditions. This topology is best suitable for hybrid power systems where the output voltage is variable due to environmental conditions. It reduces the requirement of magnetic components in the circuit and also reduces the switching losses. The proposed topology has two parts namely multi-input boost converter and level-balancing circuit. Boost converter increases the input voltage and Level Balancing Circuit produce Multi output. Equal values of capacitors are used in Level Balancing Circuit to ensure the constant output voltage at all output stages. The operating modes of each part are given and the design parameters of each part are calculated. Performance of the proposed topology is verified using MATLAB/Simulink simulation which shows the correctness of the analytical approach. Hardware is also presented to evaluate the simulation results.


2020 ◽  
Vol 188 ◽  
pp. 00017
Author(s):  
Khairunnisa Khairunnisa ◽  
Syaiful Rachman ◽  
Edi Yohanes ◽  
Awan Uji Krismanto ◽  
Jazuli Fadil ◽  
...  

Vertical axis wind turbine (VAWT) can be operated in any direction of wind speed, but it has low rotation. To improve the performance of VAWT in which low rotation, this paper presents a simple control strategy of VAWT using a DC-DC boost converter to tap constant voltage in a standalone application. The main objective of this research is to maintain a constant output voltage of converter despite variation input voltage affected by variable wind speed. A simple proportional-integral (PI) controller has been used for a DC-DC boost converter and tested in MATLAB-Simulink environment, with the closed-loop system of the converter maintain constant output voltage although the wind speed is kept changing. The PI controller obtains the feedback from the output voltage of the boost converter to produce the correct pulse width modulation (PWM) duty cycle and trigger the metal oxide semiconductor field effect transistor (MOSFET) following the reference voltage of the turbine. This system has suppressed the value of overshoot and increased the efficiency of wind turbines as 34 %.


Author(s):  
Lambu Rushi Reddy

Some industrial applications require high step-up and step-down voltage gain. The transformer less buck-boost converter has high voltage gain than that of traditional buck-boost converter without extreme duty cycles. A transformer less buck-boost converter with simple structure is obtained by inserting an additional switched network into the traditional buck-boost converter. The two power switches of the buck-boost converter operate synchronously. The operating principles of the buck-boost converter operating in continuous conduction modes are presented. A new buck- boost converter is presented by providing a feedback to the converter. By this, constant output voltage can be maintained under varying load conditions in both buck and boost operation. The output voltage of 40V (step—up mode)/8V (step down mode) is obtained with input voltage 18V and the outcomes are approved through recreation using PSIM MODEL.


2018 ◽  
Vol 2 (2) ◽  
pp. 20-38
Author(s):  
Ahmed Abbas ◽  
Abadal-Salam Hussain

The necessity for stable DC voltage in both removable and non-removable systems has been considerably desired recently. These systems have to be implemented efficiently in order to be responding rapidly based voltage variations. Under this act, the efficient power can extend the lifetime of the employed batteries in such systems. The presented efficiency can be realized with respect to buck and boost components that were implemented to generate what is called positive Buck-Boost converter circuits. The main functions of the positive Buck-Boost converter are identified by announcing the unchanged situation of output voltage polarity and indicating the level of the voltage rationally between the input and the output. It is worth mention, the positive Buck-Boost converter circuit was simulated based Proteus software, and the hardware components were connected in reality. Finally, the microcontroller type that employed in the proposed system is PIC_16F877A, which realizes the input voltage sensitively to generate Pulse Width Modulation (PWM) signals in order to feed the employed MOSFET element.


Author(s):  
P. Maithili ◽  
C. Tharani ◽  
J. Nivedha ◽  
D. Soundarrajan

This paper presents about the designing of the controller for integrated Buck Buck-Boost converter for maintaining the constant DC output voltage. This constant output voltage can be used for low voltage application. The absence of transformer includes the advantages of losses is less, efficient power factor and high efficiency. It provides the simple control structure with the positive constant output voltage .It operates on the closed loop with the designing of the PI controller for a MOSFET switch to provide the gate pulse. Whatever may be the input voltage it will produce the constant output voltage. The converter is successfully done by using MAT Lab/Simulink and verified the error reducing to negligible values.


Author(s):  
Mamidala Hemanth Reddy

The output voltage from the sustainable energy like photovoltaic (PV) arrays and fuel cells will be at less amount of level. This must be boost considerably for practical utilization or grid connection. A conventional boost converter will provides low voltage gain while Quadratic boost converter (QBC) provides high voltage gain. QBC is able to regulate the output voltage and the choice of second inductor can give its current as positive and whereas for boost increases in the voltage will not able to regulate the output voltage. It has low semiconductor device voltage stress and switch usage factor is high. Analysis and design modeling of Quadratic boost converter is proposed in this paper. A power with 50 W is developed with 18 V input voltage and yield 70 V output voltage and the outcomes are approved through recreation utilizing MATLAB/SIMULINK MODEL.


Author(s):  
Suwarno Suwarno ◽  
Tole Sutikno

<p>This paper presents the implementation of the buck-boost converter design which is a power electronics applications that can stabilize voltage, even though the input voltage changes. Regulator to stabilize the voltage using PWM pulse that triger pin 2 on XL6009. In this design of buck-boost converter is implemented using the XL6009, LM7815 and TIP2955. LM7815 as output voltage regulator at 15V with 1A output current, while TIP2955 is able to overcome output current up to 5A. When the LM7815 and TIP2955 are connected in parallel, the converter can increase the output current to 6A.. Testing is done using varied voltage sources that can be set. The results obtained from this design can be applied to PV (Photovoltaic) and WP (Wind Power), with changes in input voltage between 3-21V dc can produce output voltage 15V.</p>


Author(s):  
Waleed Ishaq Hameed ◽  
Baha Aldeen Sawadi ◽  
Ali Muayed

<span lang="EN-US">This paper deals with voltage tracking control of DC- DC boost converter based on Fuzzy neural network. Maintaining the output voltage of the boost converter in some applications are very important, especially for sudden change in the load or disturbance in the input voltage. Traditional control methods usually have some disadvantages in eliminating these disturbances, as the speed of response to these changes is slow and thus affect the regularity of the output voltage of the converter. The strategy is to sense the output voltage across the load and compare it with the reference voltage to ensure that it follows the required reference voltages. In this research, fuzzy neural was introduced to achieve the purpose of voltage tracking by training the parameter of controller based on previous data. These data sets are the sensing input voltage of the converter and the value of the output load changes. To establish the performance of proposed method, MATLAB/SIMULINK environments are presented, simulation results shows that proposed method works more precisely, faster in response and elimination the disturbances</span>


2017 ◽  
Vol 7 (1.2) ◽  
pp. 47
Author(s):  
N K Rayaguru ◽  
N. Poornachandra Rao ◽  
K. Navin Sam ◽  
Sunil Kumar Thakur

In this paper, state space model of the complete Wind Energy Electric Conversion System (WEECS) comprising of wind turbine, Permanent Magnet Synchronous Generator (PMSG), uncontrolled rectifier, DC-DC boost converter, and SPWM inverter feeding a standalone load has been formulated. The derived state space model is then simulated using Matlab/Simulink to test the model. As the standalone three phase load connected to the inverter demands constant output voltage irrespective of intermittent wind pattern, a PI controller is used to control the duty ratio of DC-DC boost converter to maintain constant output voltage at the inverter end.


Sign in / Sign up

Export Citation Format

Share Document