A Step Down Transformerless Single Switch Integerated Buck and Buck-Boost Converter

Author(s):  
P. Maithili ◽  
C. Tharani ◽  
J. Nivedha ◽  
D. Soundarrajan

This paper presents about the designing of the controller for integrated Buck Buck-Boost converter for maintaining the constant DC output voltage. This constant output voltage can be used for low voltage application. The absence of transformer includes the advantages of losses is less, efficient power factor and high efficiency. It provides the simple control structure with the positive constant output voltage .It operates on the closed loop with the designing of the PI controller for a MOSFET switch to provide the gate pulse. Whatever may be the input voltage it will produce the constant output voltage. The converter is successfully done by using MAT Lab/Simulink and verified the error reducing to negligible values.

DC-DC converters are playing an important role in designing of Electric Vehicles, integration of solar cells and other DC applications. Contemporary high power applications use multilevel converters that have multi stage outputs for integrating low voltage sources. Conventional DC-DC converters use single source and have complex structure while using for Hybrid Energy Systems. This paper proposes a multi-input, multi-output DC-DC converter to produce constant output voltage at different input voltage conditions. This topology is best suitable for hybrid power systems where the output voltage is variable due to environmental conditions. It reduces the requirement of magnetic components in the circuit and also reduces the switching losses. The proposed topology has two parts namely multi-input boost converter and level-balancing circuit. Boost converter increases the input voltage and Level Balancing Circuit produce Multi output. Equal values of capacitors are used in Level Balancing Circuit to ensure the constant output voltage at all output stages. The operating modes of each part are given and the design parameters of each part are calculated. Performance of the proposed topology is verified using MATLAB/Simulink simulation which shows the correctness of the analytical approach. Hardware is also presented to evaluate the simulation results.


2018 ◽  
Vol 15 (2) ◽  
pp. 165-186
Author(s):  
Naik Venkatesh ◽  
Paulson Samuel

The voltage produced by the fuel cell (FC) device is unregulated and varies from 0.4 V to 0.8 V on full load to no-load respectively. When these devices are used in low voltage applications and output voltage lies between higher and lower values of input voltage range, it is required to connect a DCDC buck-boost converter to get a fixed output voltage. In this paper, a new noninverting multi device buck boost converter (MDBBC) is proposed, in which the multi device buck and boost converters are connected in cascade and operate individually either in buck or boost operating modes. The paper also includes the steady state analysis of MDDBC based on the state space averaging technique. A prototype model of proposed converter compatible with FCS-1000 Horizon FC model with rating of 270 W, 36 V is designed and developed. The proposed converter is experimentally validated with the results obtained from the prototype model, and results show the superiority of the converter with higher efficiency and lesser ripple current observed under steady state operation of the converter.


2021 ◽  
Vol 13 (19) ◽  
pp. 11059
Author(s):  
Shahrukh Khan ◽  
Arshad Mahmood ◽  
Mohammad Zaid ◽  
Mohd Tariq ◽  
Chang-Hua Lin ◽  
...  

High gain DC-DC converters are getting popular due to the increased use of renewable energy sources (RESs). Common ground between the input and output, low voltage stress across power switches and high voltage gain at lower duty ratios are desirable features required in any high gain DC-DC converter. DC-DC converters are widely used in DC microgrids to supply power to meet local demands. In this work, a high step-up DC-DC converter is proposed based on the voltage lift (VL) technique using a single power switch. The proposed converter has a voltage gain greater than a traditional boost converter (TBC) and Traditional quadratic boost converter (TQBC). The effect of inductor parasitic resistances on the voltage gain of the converter is discussed. The losses occurring in various components are calculated using PLECS software. To confirm the performance of the converter, a hardware prototype of 200 W is developed in the laboratory. The simulation and hardware results are presented to determine the performance of the converter in both open-loop and closed-loop conditions. In closed-loop operation, a PI controller is used to maintain a constant output voltage when the load or input voltage is changed.


Author(s):  
Mamidala Hemanth Reddy

The output voltage from the sustainable energy like photovoltaic (PV) arrays and fuel cells will be at less amount of level. This must be boost considerably for practical utilization or grid connection. A conventional boost converter will provides low voltage gain while Quadratic boost converter (QBC) provides high voltage gain. QBC is able to regulate the output voltage and the choice of second inductor can give its current as positive and whereas for boost increases in the voltage will not able to regulate the output voltage. It has low semiconductor device voltage stress and switch usage factor is high. Analysis and design modeling of Quadratic boost converter is proposed in this paper. A power with 50 W is developed with 18 V input voltage and yield 70 V output voltage and the outcomes are approved through recreation utilizing MATLAB/SIMULINK MODEL.


Author(s):  
Suwarno Suwarno ◽  
Tole Sutikno

<p>This paper presents the implementation of the buck-boost converter design which is a power electronics applications that can stabilize voltage, even though the input voltage changes. Regulator to stabilize the voltage using PWM pulse that triger pin 2 on XL6009. In this design of buck-boost converter is implemented using the XL6009, LM7815 and TIP2955. LM7815 as output voltage regulator at 15V with 1A output current, while TIP2955 is able to overcome output current up to 5A. When the LM7815 and TIP2955 are connected in parallel, the converter can increase the output current to 6A.. Testing is done using varied voltage sources that can be set. The results obtained from this design can be applied to PV (Photovoltaic) and WP (Wind Power), with changes in input voltage between 3-21V dc can produce output voltage 15V.</p>


2020 ◽  
Vol 188 ◽  
pp. 00017
Author(s):  
Khairunnisa Khairunnisa ◽  
Syaiful Rachman ◽  
Edi Yohanes ◽  
Awan Uji Krismanto ◽  
Jazuli Fadil ◽  
...  

Vertical axis wind turbine (VAWT) can be operated in any direction of wind speed, but it has low rotation. To improve the performance of VAWT in which low rotation, this paper presents a simple control strategy of VAWT using a DC-DC boost converter to tap constant voltage in a standalone application. The main objective of this research is to maintain a constant output voltage of converter despite variation input voltage affected by variable wind speed. A simple proportional-integral (PI) controller has been used for a DC-DC boost converter and tested in MATLAB-Simulink environment, with the closed-loop system of the converter maintain constant output voltage although the wind speed is kept changing. The PI controller obtains the feedback from the output voltage of the boost converter to produce the correct pulse width modulation (PWM) duty cycle and trigger the metal oxide semiconductor field effect transistor (MOSFET) following the reference voltage of the turbine. This system has suppressed the value of overshoot and increased the efficiency of wind turbines as 34 %.


This paper presents a closed loop control of an active-clamped full-wave quasi-resonant boost converter with zero-current-switching (ZCS) for power factor correction. Possibility to incorporate higherswitching frequency and has some potency to reduce switching losses. Power factor improvement and high efficiency is achieved with a constant output voltage and DC output voltage is regulated by using closed loop control .The concept of the proposed switchingscheme results lesser switching loss, higher efficiency, possibility to have higher switching frequency, and has potential to reduce converter's conducted EMI. This paper also presents voltage regulation using closed loop system and the simulation results are verified.


Author(s):  
Suneel Raju Pendem ◽  
Bidyadhar Subudhi

This article presents a design and development method of a DC-DC boost converter with constant output voltage. This system has a nonlinear dynamic behavior, as it works in switch-mode. Moreover, it is exposed to significant variations which may take this system away from nominal conditions, due to changes on the load or on the line voltage at the input. From a fluctuating or a variable input voltage, boost converter is able to step up the input voltage to a higher constant dc output voltage using the Non-linear feedback controllers such as PID controller and the Sliding Mode controllers. By this technique, the output of the converter is measured and compared with a reference voltage. The differential of the compared value will be used to produce a pulse width modulation signal to control switch in the boost converter. Simulation results describe the performance of the proposed design.


Author(s):  
Lambu Rushi Reddy

Some industrial applications require high step-up and step-down voltage gain. The transformer less buck-boost converter has high voltage gain than that of traditional buck-boost converter without extreme duty cycles. A transformer less buck-boost converter with simple structure is obtained by inserting an additional switched network into the traditional buck-boost converter. The two power switches of the buck-boost converter operate synchronously. The operating principles of the buck-boost converter operating in continuous conduction modes are presented. A new buck- boost converter is presented by providing a feedback to the converter. By this, constant output voltage can be maintained under varying load conditions in both buck and boost operation. The output voltage of 40V (step—up mode)/8V (step down mode) is obtained with input voltage 18V and the outcomes are approved through recreation using PSIM MODEL.


Author(s):  
Sagar. M. Lanjewar ◽  
K. Ramsha

PMBLDC motors are gaining a lot of popularity due to their high efficiency as the Permanent Magnets do not carry current which results in negligible copper losses as compared to asynchronous motors. This paper introduces a design for speed control of the PMBLDC motor using multilevel dc link inverter fed by a Boost Converter. The multilevel dc link inverter consist of five level voltage sources, which are controlled by switches. The motor can be driven at different speed level as per its load requirement by making use of five level MLDC Link Inverter. In case of traditional inverter which is only a one level inverter the speed cannot be controlled as per the load requirement. The MLDC link inverter provides the output voltage waveform in step shape form. Thus as the number of cells (n) increases output voltage touches the fundamental component. The input voltage is low, thus to increase the input voltage given to the MLDC link inverter the (Boost Converter) has been designed. The Boost Converter is placed in between (DBR)Diode Bridge Rectifier and (MLDCLI). Both the design and results of Single level inverter and Multilevel Dc Link Inverter are obtained and compared by using the MATLAB Software along with the use of Simulink and Simpower system Tools.


Sign in / Sign up

Export Citation Format

Share Document