scholarly journals Oral insulin delivery for treatment of diabetes mellitus

Author(s):  
Durga Devi K

Diabetes mellitus is characterized by a condition known as hyperglycemia which may be controlled through medication and insulin. Current insulin therapy for diabetes mellitus involves frequent dosing of subcutaneous injections, causing local discomfort, patient incompliance, hypoglycemia, and hyperinsulinemia, among others, one of the approaches to overcoming these issues is to administer insulin through oral route. An oral form of insulin has been the elusive goal for many investigators since the protein initial discovery by Banting and Best in 1922. Oral delivery of insulin is one of the promising and anticipated areas in the treatment of diabetes, primarily because it may significantly improve the quality of life of patients who receives insulin regularly. However, there are several challenges in developing an oral route for insulin delivery; include low bioavailability due to rapid enzyme degradation in the stomach, inactivation, and digestion by proteolytic enzymes in the intestinal lumen, poor permeability, and poor stability. Several companies have developed technology platforms that protect polypeptides and proteins from enzymatic hydrolysis, enable their transport across the epithelial lining, and promote their absorption from the GI tract. Most notably, the use of permeation enhancers, protease inhibitors, enteric coatings, and polymer microsphere formulation will be covered, including commentary on which methods hold more promise towards the successful development of oral insulin. This review, considers the current literature on the advances, methods, needs, and challenges in the development of oral insulin.

Author(s):  
Kinesh V P ◽  
Neelam D P ◽  
Punit B ◽  
Bhavesh S.B ◽  
Pragna K. S

Diabetes mellitus is a serious pathologic condition that is responsible for major healthcare problems worldwide and costing billions of dollars annually. Insulin replacement therapy has been used in the clinical management of diabetes mellitus for more than 84 years. The present mode of insulin administration is by the subcutaneous route through which insulin is presented to the body in a non-physiological manner having many challenges. Hence novel approaches for insulin delivery are being explored. Challenges to oral route of insulin administration are: rapid enzymatic degradation in the stomach, inactivation and digestion by proteolytic enzymes in the intestinal lumen and poor permeability across intestinal epithelium because of its high molecular weight and lack of lipophilicity. Liposomes, microemulsions, nanocubicles, and so forth have been prepared for the oral delivery of insulin. Chitosan-coated microparticles protected insulin from the gastric environment of the body and released intestinal pH. Limitations to the delivery of insulin have not resulted in fruitful results to date and there is still a need to prepare newer delivery systems, which can produce dose-dependent and reproducible effects, in addition to increased bioavailability.


2020 ◽  
Vol 11 (5) ◽  
pp. 177-184
Author(s):  
Swamy P V ◽  
Phanisri D D ◽  
Prasanna Rani G

Oral insulin is an exciting space of research and development within the field of diabetology. The oral route is taken into account to be the foremost convenient and desired route of drug delivery, particularly, when repeated or routine administration is necessary. Diabetes mellitus is a serious pathologic condition that is to blame for major healthcare problems. Insulin replacement therapy has been employed in the clinical management of diabetes mellitus for over 90 years. So, the development of oral insulin remains an ultimate goal to both enhance ease of use and to produce therapeutic benefits rooted in its direct delivery to the portal vein and liver. This brief review covers the importance, novel approaches of oral insulin delivery as well as challenges, market status and future perspectives of oral insulin products.


2021 ◽  
Author(s):  
Farah Benyettou ◽  
Nawel Kaddour ◽  
Thirumurugan Prakasam ◽  
Gobinda Das ◽  
Sudhir Kumar Sharma ◽  
...  

We report the successful use of a gastro-resistant covalent organic framework for in vivo oral delivery of insulin.


2021 ◽  
Vol 18 ◽  
Author(s):  
Rohini Bhattacharya ◽  
Asha P. Johnson ◽  
Shailesh T. ◽  
Mohamed Rahamathulla ◽  
Gangadharappa H. V.

: Diabetes mellitus is found to be among the most suffered and lethal diseases for mankind. Diabetes mellitus type-1 is caused by the demolition of pancreatic islets responsible for the secretion of insulin. Insulin is the peptide hormone (anabolic] that regulates the metabolism of carbohydrates, fats, and proteins. Upon the breakdown of the natural process of metabolism, the condition leads to hyperglycemia (increased blood glucose levels]. Hyperglycemia demands outsourcing of insulin. The subcutaneous route was found to be the most stable route of insulin administration but faces patient compliance problems. Oral Insulin delivery systems are the patient-centered and innovative novel drug delivery system, eliminating the pain caused by the subcutaneous route of administration. Insulin comes in contact across various barriers in the gastrointestinal tract, which has been discussed in detail in this review. The review describes about the different bioengineered formulations, including microcarriers, nanocarriers, Self-Microemulsifying drug delivery systems (SMEDDs), Self-Nanoemulsifying drug delivery systems (SNEDDs), polymeric micelles, cochleates, etc. Surface modification of the carriers is also possible by developing ligand anchored bioconjugates. A study on evaluation has shown that the carrier systems facilitate drug encapsulation without tampering the properties of insulin. Carrier-mediated transport by the use of natural, semi-synthetic, and synthetic polymers have shown efficient results in drug delivery by protecting insulin from harmful environment. This makes the formulation readily acceptable for a variety of populations. The present review focuses on the properties, barriers present in the GI tract, overcome the barriers, strategies to formulate oral insulin formulation by enhancing the stability and bioavailability of insulin.


Author(s):  
Pooja Mathur ◽  
Chandra Kant Mathur ◽  
Kanchan Mathur

The subcutaneous injection of insulin for the treatment of diabetes mellitus can lead to patient non-compliance, discomfort, pain and local infection is a chronic metabolic health disease affecting the homeostasis of blood sugar levels in human beings. Oral route of drug delivery system has been the most widely accepted means of drug administration other than invasive drug delivery systems. For the development of an oral insulin delivery system, we have to focus on overcoming the various gastro-intestinal barriers for insulin uptake from the gastrointestinal tract. To overcome these barriers various types of formulations such as insulin conjugates, micro/nanoparticles, liposomes, hydrogel, capsule, and tablets are designed to deliver insulin orally. Various potential ways to administer insulin orally has been explored over years but a fluctuating level of insulin release have been recorded. A number of advancement has taken place in the recent years for understanding the needs of improved oral delivery systems of insulin. This review article concentrates on the challenges for oral drug delivery of insulin as well as various carriers used for the oral drug delivery of insulin and also provides the relevant information about the clinical tested formulations of oral insulin and its patents.


RSC Advances ◽  
2016 ◽  
Vol 6 (58) ◽  
pp. 52858-52867 ◽  
Author(s):  
Jing Zhang ◽  
Xiaoyang Liang ◽  
Ying Zhang ◽  
Qing Shang

The CMC-g-PAA hydrogels could release INS in alkaline environment (i.e. intestinal), specifically. This method could prevent IND from destroying by pepsase. Therefore, the CMC-g-PAA hydrogel had a potential application on the oral delivery of protein drugs.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1026
Author(s):  
Fatemah Bahman ◽  
Sebastien Taurin ◽  
Diab Altayeb ◽  
Safa Taha ◽  
Moiz Bakhiet ◽  
...  

The oral delivery of insulin is a convenient and safe physiological route of administration for management of diabetes mellitus. In this study, we developed a poly-(styrene-co-maleic acid) (SMA) micellar system for oral insulin delivery to overcome the rapid degradation of insulin in the stomach, improve its absorption in the intestine, and provide a physiologically-relevant method of insulin to reach portal circulation. The insulin was encapsulated into SMA micelles in a pH-dependent process. The charge and size of the nanoparticles were determined by dynamic light scattering. The insulin loading of the nanoparticles was measured by HPLC. The transport of the SMA-insulin through biological membranes was assessed in vitro using Caco-2 cells, ex vivo rat intestinal section, and in vivo in a streptozotocin-induced diabetes mouse model. SMA-insulin micelles were negatively charged and had a mean diameter of 179.7 nm. SMA-insulin efficiently stimulated glucose uptake in HepG-2 hepatic cells and was transported across the Caco-2 epithelial cells in vitro by 46% and ex vivo across intestinal epithelium by 22%. The animal studies demonstrated that orally-administered SMA-insulin can produce a hypoglycemic effect up to 3 h after administration of one dose. Overall, our results indicate that SMA micelles are capable of the oral delivery of bioactive compounds like insulin and can be effective tools in the management of diabetes.


2011 ◽  
Vol 301 (6) ◽  
pp. G956-G967 ◽  
Author(s):  
Jeffrey W. Card ◽  
Bernadene A. Magnuson

Nanotechnology is providing new and innovative means to detect, diagnose, and treat disease. In this regard, numerous nanoparticle-based approaches have been taken in an effort to develop an effective oral insulin therapy for the treatment of diabetes. This review summarizes efficacy data from studies that have evaluated oral insulin therapies in experimental models. Also provided here is an overview of the limited safety data that have been reported in these studies. To date, the most promising approaches for nanoparticle-based oral insulin therapy appear to involve the incorporation of insulin into complex multilayered nanoparticles that are mucoadhesive, biodegradable, biocompatible, and acid protected and into nanoparticles that are designed to take advantage of the vitamin B12 uptake pathway. It is anticipated that the continued investigation and optimization of nanoparticle-based formulations for oral delivery of insulin will lead to a much sought-after noninvasive treatment for diabetes. Such investigations also may provide insight into the use of nanoparticle-based formulations for peptide- and protein-based oral treatment of other diseases and for various food-related purposes.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 100
Author(s):  
Abdul Ahad ◽  
Mohammad Raish ◽  
Yousef A. Bin Jardan ◽  
Abdullah M. Al-Mohizea ◽  
Fahad I. Al-Jenoobi

Insulin is used for the treatment of diabetes mellitus, which is characterized by hyperglycemia. Subcutaneous injections are the standard mode of delivery for insulin therapy; however, this procedure is very often invasive, which hinders patient compliance, particularly for individuals requiring insulin doses four times a day. Furthermore, cases have been reported of sudden hypoglycemia occurrences following multidose insulin injections. Such an invasive and intensive approach motivates the quest for alternative, more user-friendly insulin administration approaches. For example, transdermal delivery has numerous advantages, such as prolonged drug release, low variability in the drug plasma level, and improved patient compliance. In this paper, the authors summarize different approaches used in transdermal insulin delivery, including microneedles, chemical permeation enhancers, sonophoresis, patches, electroporation, iontophoresis, vesicular formulations, microemulsions, nanoparticles, and microdermabrasion. Transdermal systems for insulin delivery are still being widely researched. The conclusions presented in this paper are extracted from the literature, notably, that the transdermal route could effectively and reliably deliver insulin into the circulatory system. Consistent progress in this area will ensure that some of the aforementioned transdermal insulin delivery systems will be introduced in clinical practice and commercially available in the near future.


Sign in / Sign up

Export Citation Format

Share Document