scholarly journals Delignification of Rice Husk by Microwave Assisted Chemical Pretreatment

2018 ◽  
Vol 8 (3) ◽  
pp. 3084-3087
Author(s):  
S. M. Laghari ◽  
M. M. Tunio ◽  
A. Q. Laghari ◽  
A. J. Laghari ◽  
A. M. Ali

Rice husk has the potential to be used as a source of alternative energy e.g. as biofuel. Its high lignin content, however, poses difficulty to this use. This study investigates the use of microwave assisted acidic and alkaline pretreatment methods to improve the characteristics of rice husk for energy production. The use of microwave assisted 3.5% NaOH provided optimum pretreatment of rice husk; the lignin content was reduced from 17.8 to 10.2%, the cellulose content increased from 38.6 to 59.3% and the C/N ratio was within the optimum range of 25-35. The results showed enhanced potential of biofuel production from rice husk by this pretreatment.

2018 ◽  
Vol 31 ◽  
pp. 02007 ◽  
Author(s):  
Hashfi Hawali Abdul Matin ◽  
Hadiyanto

An effort to obtain alternative energy is still interesting subject to be studied, especially production of biogas from agriculture waste. This paper was an overview of the latest development of biogas researches from rice husk waste by Solid State Anaerobic Digestion (SSAD). The main obstacle of biogas production from rice husk waste was the lignin content which is very difficult degraded by microbes. Various pretreatments have been conducted, either physically, chemically as well as biologically. The SSAD method was an attractive option because of the low water content of rice husk waste. The biogas yield by SSAD method gave more attractive result compared to Liquid Anaerobic Digestion (LAD) method. Various studies were still conducted in batch mode laboratory scale and also has not found optimum operating conditions. Research on a larger scale such as bench and pilot scale with continuous systems will be an increase trend in the future research.


Author(s):  
C. C. Nwajiobi ◽  
J. O. E. Otaigbe ◽  
O. Oriji

Microcrystalline celluloses (MCC) were prepared from α-celluloses obtained from fluted pumpkin stalk and pod. The substrates were subjected to treatment with 2% (w/v) NaOH, 3.5% (w/v) NaOCl and 17.5% (w/v) NaOH solutions respectively to obtain alpha celluloses. Acid hydrolysis of the alpha-celluloses using 2.5 N hydrochloric acid were carried out. The study evaluates and compares the physicochemical properties of microcrystalline cellulose obtained from the pod and stalk of fluted pumpkin. Composition of cellulose, hemicellulose and lignin were also determined. Results showed cellulose; hemicellulose and lignin content of the pod husk and stalk were 49%, 26%, 9% and 41%, 24%, 26%, respectively. The morphology of the hydrolyzed MCCs’ were investigated using scanning electron microscopy (SEM) and the results revealed the stalk (FS-MCC) to have an individual rod-like shaped fiber when compared with flat-shaped large aggregated forms of the pod (FP-MCC). The particles sizes were also uneven with FP-MCC (6.689 µm) having larger particle sizes than FS-MCC (5.538 µm). The high cellulose content of the pod husk shows that the applications may be extended in the production of other cellulose derivatives while the high lignin content of the stalk reveals other alternative source of producing lignin in the making of textile dyes, coating and other agricultural chemical. Pod MCC (FP-MCC) had better physicochemical properties than the stalk MCC (FS-MCC).


2021 ◽  
Vol 15 (1) ◽  
pp. 251-262
Author(s):  
A. Sanusi ◽  
A.A. Farouq ◽  
A.Y. Bazata ◽  
A.D. Ibrahim ◽  
I. Mas’ud ◽  
...  

Interest in the area of biomass based-product production is increasing all over the world due to the environmental challenges posed by fossil fuel and fear of its extinction. Production of biofuel and other compounds especially from agricultural waste can reduce these environmental problems because of its sustainability and environmentally friendliness. One of the major petrochemical product widely used in many industries is 2,3-butanediol and was found to be produced from agricultural wastes by microorganisms. Therefore, Microbial production of 2,3-butanediol from rice husk using Clostridium species was investigated in this research. Structural composition of the rice husk was determined before and after pretreatment. Hemicellulose and lignin content of rice husk was determined after extraction while cellulose was determined as the difference from the extractives, hemicelluloses and lignin. Dilute (2%) NaOH was used for the pretreatment of rice husk. Hydrolysis was carried out using Aspergillus niger and reducing sugar released was determined using standard method with UV-VIS spectrophotometer. Clostridium species was isolated from sugarcane bagasse, identified using basic morphological and molecular biology techniques. The fermentation of rice husk was performed using the Clostridium species. Fermentation by-product was determined using Gas Chromatography Mass-spectrometry. Cellulose content increased from 32% before pretreatment to 53.3% after pretreatment, lignin increased from 8.4% before pretreatment to 30.7% after pretreatmemt and hemicellulose decreased from 30% before pretreatment to 8% after pretreatment. A total of 1.05 g/l of reducing sugar was released after enzymatic hydrolysis of the rice husk with Aspergillus niger. Alcohol 2,3-butanediol (0.6%) and Furfuryl alcohol (0.45%) were detected in the by-product of fermentation. Other compounds detected are fatty acids that ranges from C16 to C25 with 9,12-Octadecanoic acid as the major fatty acid. From the results of this work, Rice husk was found to have substantial amount of sugar (cellulose and hemicelluce) that can be converted to valuable product including 2,3-butanediol. Keywords: Biofuel, Bio-refinary, Cellulose, Clostrudium, fermentation.


2019 ◽  
Vol 8 (3) ◽  
Author(s):  
Verônica Scalet ◽  
Alessandra Luiza Da Róz ◽  
Luis Ricardo Oliveira Santos ◽  
Ana Larissa Santiago Hansted ◽  
Ariane Aparecida Felix Pires ◽  
...  

The licuri nut shell is a potential source of biomass for energy production. The aim of this study was the physicochemical characterization of the licuri shell, focusing on the increase of its use as a fuel. The material was collected in Caldeirão Grande-BA and the characterization included a wide range of analyses such as: moisture content, bulk density, particle size distribution, ash content, volatile matter, fixed carbon, high heating value (HHV), hot water and cyclohexane/ethanol extractions, Klason lignin content, and thermogravimetric analysis (TGA). The obtained results  were: moisture content (11,1%), HHV (4652 kcal.kg-1), Klason lignin content (36,86%), volatile content (74,91%), and fixed carbon (21,19%). The results showed that the material can be considered suitable for the purpose of generating energy when compared with other types of biomasses. The ash content (3,9%) and the extractives content (46,75%) are in accordance with the values observed for the babassu nut shell, Brazilian nut shell, and coconut. Finally, by the TGA analysis, it was observed that the degradation peak occurred at 272°C with a loss of 65% of weight. With these results, the licuri nut shell has shown to be potentially promising for the energy production.


2018 ◽  
Vol 90 (2) ◽  
pp. 271-284
Author(s):  
Vasudha Kotia ◽  
Rangananthan Vijayaraghavan ◽  
Vidhya Rangaswamy ◽  
Pavankumar Aduri ◽  
Santosh B. Noronha ◽  
...  

Abstract Lignocellulosic biomass is a rich source of cellulose and one of the most promising raw materials for the production of biofuels and other value added chemicals. However, its high lignin content and complex cellular structure represent a significant processing challenge. In this work, the effect of pretreatment using [EMIM][Ac] was studied at various process parameters in order to develop a cost-effective process. In order to minimize the loss of sugars in this process bulk of the solids, comprising both regenerated cellulose and undissolved particles were subjected to the enzymatic hydrolysis. Up to 96% enzymatic digestibility was achieved, even with relatively coarse particle sizes (0.6–1.0 mm range), at 10% biomass loading. The enhanced digestibility of CS is attributed to reduction in lignin content, crystallinity of the cellulose coupled with an increase in surface area.


Author(s):  
Sanusi A. ◽  

There is increasing interest in the area of biofuel production due to fear of fossil fuel extinction as a result of over exploitation and crises. During biofuel production, substrate needs to undergo pre-treatment and hydrolysis where acids and alkali are mostly used. In this study, Acremonium butyri was used for both pre-treatment and hydrolysis. Structural compositions of the rice husk were determined. Extractives, hemicellulose and Lignin content was determined via extraction using Soxhlet extractor while cellulose was determined as the difference from the extractives, hemicelluloses and lignin. Acremonium butyri was isolated from dried roots of Piliostigma reticulatum (Kalgo) by keeping the roots in a clean plastic for a period of 7 days on moist environment after which fungal growth appeared. The growth was aseptically transferred on to prepared S.D.A plate and kept at room temperature. The fungal growth was identified as based on the physical and microscopic characteristics. About 50g of rice husk was mixed with 500 ml of distilled water in the ration of 1:10 to obtain homogenous slurry and then inoculated with 2ml of prepared Acremonium butyri solution and incubated at room temperature for up to 3 weeks with frequent shaking at certain intervals. Reducing sugar test was carried out to determine the reducing sugar released with UV-VIS spectrophotometer. The results obtained indicate that rice husk contained 32%, 30%, 29% and 8.4% of cellulose, hemicelluloses, extractives and lignin respectively. And a total of 0.936g/l of reducing sugar was released after 3 weeks of pre-treatment. The results implies that Acremonium butyri separated the component of rice husk (pre-treatment) as well as break down cellulose and hemicelluloses into its monomers (hydrolysis) thereby releasing sugar. Hence, Acremonium butyri is a good microorganism for biological pre-tretment and hydrolysis. Keywords: Acremonium butyri, Rice Husk, Pre-treatment, Hydrolysis, Biofuel


2020 ◽  
Vol 18 (2) ◽  
pp. 319-322
Author(s):  
Hashfi Hawali Abdul Matin ◽  
Hadiyanto Hadiyanto

Indonesia is a large rice producing country where from these activities it produces waste in the form of rice husk. Rice husk cannot be degraded by itself due to the lignin content contained in the rice husk. Therefore, treatment is carried out to destroy the lignin content and use it as alternative energy in the form of biogas. The study was conducted at a laboratory scale at room temperature, preliminary treatment using 3% NaOH under the SSAD conditions of 27.5% TS and then biogas production was measured once every two days for 90 days. Furthermore, the results of biogas production were observed between biogas with NaOH and without NaOH and carried out a study of the kinetics. The result is that biogas production with NaOH is higher, reaching 59.2 mL/grTS whereas without NaOH at 14.7 mL/grTS. The results of kinetic studies using mathematical modeling through the Gompertz equation, the variable with NaOH is known to have a maximum biogas production of 63.9 mL/grTS, a daily biogas production rate of 0.97 mL/grTS.day and the initial formation of biogas significantly on the 8th day.


2018 ◽  
Vol 154 ◽  
pp. 01035 ◽  
Author(s):  
Kusmiyati ◽  
Ryzka Pratiwi Sukmaningtyas

Development of alternative energy is needed to solve the energy problem, including bioethanol. Banana pseudo-stem is a lignocellulose material that can used to produce bioethanol. Banana pseudo-stem has 28.83% cellulose and 19.39% lignin. The amount of lignin will reduce by pretreatment process. Variations of pretreatment methods by autoclaving of banana-pseudo stem in a steam, 0.5N, 1N, 1.5N, 2N NaOH solutions for 90 minutes were employed. Then the preteated samples were further enzymatic hydrolysed for 24, 48, 72 hours. The fermentation method of simultaneous saccharification and fermentation (SSF) was applied using cellulase enzyme and yeast of Saccharomyces cerevisiae for 120 hours. The variation of the pretreatment process by increasing of NaOH concentration solutions led to decreased the lignin content while increased in cellulose content. The lowest lignin content was 11.44% and the highest cellulose was 51.66%. The highest sugar content was 29.8 g/L (at pretreatment 2N NaOH solution, 72 hours hydrolysis). The highest bioethanol amount (4.32 g/L) was produced from pretreated banana stem using 2N NaOH solution.


2019 ◽  
Vol 4 (1) ◽  
pp. 18
Author(s):  
Novia Novia ◽  
Vishnu K Pareek ◽  
Hermansyah Hermansyah ◽  
Asyeni Miftahul Jannah

The high cellulosic content of rice husk can be utilized as a feedstock for pulp and biofuel. Pretreatment is necessary to break the bonds in the complex lignocellulose matrices addressing the cellulose access. This work aims to utilize the rice husk using dilute acid and alkaline pretreatment experimentally and CFD modeling. The study consists of three series of research. The first stage was the dilute acid pretreatment with sulfuric acid concentration of 1% to 5% (v/v) at 85°C for 60 minutes, and alkaline pretreatment with NaOH concentration of 1% to 5% (w/v) at 85oC for 30 minutes separately. The second stage used the combination of both pretreatment. Moreover the last stage of research was hydrodynamic modeling of pretreatment process by CFD (ANSYS FLUENT 16). The experimental results showed that the lowest lignin content after acid pretreatment was about 10.74%. Alkaline pretreatment produced the lowest lignin content of 4.35%. The highest cellulose content was 66.75 % for acid-alkaline pretreatment. The lowest content of lignin was about 6.09% for acid-alkaline pretreatment. The lowest performance of alkaline pretreatment on HWS (hot water solubility) of about 7.34% can be enhanced to 9.71% by using a combination alkaline-acid. The combined pretreatments result hemicellulose of about 9.59% (alkaline-acid) and 9.27% (acid-alkaline). Modeling results showed that the mixing area had the minimum pressure of about -6250 Pa which is vortex leading minimum efficiency of mixing. The rice husk flowed upward to the upper level and mixed with reagent in the perfect mixing.  


Author(s):  
B.G. Mokolopi

Communal grazing does not offer adequate forage for ruminants throughout the year. This problem is exacerbated during the dry season when grazing is scarce and of poor nutritional quality. Mineral shortages are common in communal grazing environments and yet they are nutritional requirements for optimal development, physiologic functioning and productivity in animals, as well as for cattle growth, reproduction and health. However, the use of groundnut (Arachis hypogea L.) shell (GNS) that are readily available but have no direct nutritional benefit in humans, have not been extensively investigated as a potential source of animal feed. This paper investigates the potential of GNS as feed supplement for ruminants on pasture and its use in other industries. After extracting the seed, the groundnut shell, accounts for roughly 21-29 per cent of the total weight of the nut. Despite the high lignin content of the shell that necessitates adequate processing before use in animal feed, groundnut shell includes 0.50 per cent crude protein, 59.0 per cent crude fiber, 2.50 per cent ash and 4.43 per cent carbs. Sodium (42.00 mg/100 g), potassium (705.11 mg/100 g), magnesium (3.98.00 mg/100 g), calcium (2.28 mg/100 g), iron (6.97 mg/100 g), zinc (3.20 mg/100 g) and phosphorus (10.55 mg/100 g) are all abundant in groundnut shells. In view of this, GNS, a by-product of industrial processing of groundnuts is a rich source of nutrients and can be used to supplement ruminants on pastures during times when pastures are in short supply and of poor quality. Studies are needed to investigate their use to supplement cattle on pasture grazing during times of feed shortage. However, its use as animal feed supplement is likely to face challenges from other industries such as biofuel production.


Sign in / Sign up

Export Citation Format

Share Document