scholarly journals Performance and Micro Structural Analysis of Portland Slag Cement Mortar Induced with Pozzolanic Additives

Portland cement is a kind of cement used where the high strength and durability is needed. Also, this type of cement is essentially used to control the CO2 emission during the manufacturing process of the concrete. This cement is made up of slag with the activator such as alkalis in the form of sodium hydroxide or sodium silicate. However, this addition is increasing the overall cost of the production of concrete. In this research, a new attempt has been made to use the natural activators of Rice Husk Ash (RHA) and Natural Steatite Powder (NSP). This research aims to determine the effects of RHA and NSP with Portland slag cement by partial replacement with 5%, 10%, 15% and 20% of RHA and NSP. The influence of the RHA and NSP on the mechanical properties of the mortar was evaluated by measuring the compressive strength and the split tensile strength. The durability properties of the specimens were analyzed by water absorption, sorpitivity and acid attack tests. The analysis of the microstructure of the specimens was done by scanning electron microscope (SEM) and Fourier Transform Infrared Spectra analysis (FTIR). It was observed that the maximum compressive strength and split tensile strength was in 5% RHA and NSP blended mortar. The durability results showed that the 10% RHA and 10% NSP had lesser water absorption and sorpitivity values. From the results of micro structural analysis it was observed that replacing cement with 5% RHA and 5% NSP results in improvement of microstructure of cement mortar.

Author(s):  
Shahid Bashir

Abstract: Cement production is one of the sources that emit carbon dioxide, in addition to deforestation and combustion of fossil fuels also leads to ill effects on environment. The global cement industry accounts for 7% of earth’s greenhouse gas emission. To enhance the environmental effects associated with cement manufacturing and to constantly deplore natural resources, we need to develop other binders to make the concrete industry sustainable. This work offers the option to use waste paper sludge ash as a partial replacement of cement for new concrete. In this study cement in partially replaced as 5%, 10%, 15% and 20% by waste paper sludge ash in concrete for M25 mix and tested for compressive strength, tensile strength, water absorption and dry density up to the age of 28days and compared it with conventional concrete, based on the results obtained, it is found that waste paper ash may be used as a cement replacement up to 5% by weight and the particle size is less the 90µm to prevent reduction in workability. Keywords: slump test, Compressive strength, split tensile strength, water absorption test, Waste Paper Sludge Ash Concrete, Workability.


Author(s):  
Sravya Nalla ◽  
Janardhana Maganti ◽  
Dinakar Pasla

Self-compacting concrete (SCC) is a revolutionary development in concrete construction. The addition of mineral admixtures like metakaolin, which is a highly reactive pozzolana to the SCC mixes, gives it superior strength and durability. The present work is an effort to study the behavior of M50 grade SCC by partial replacement of Portland Slag Cement (PSC) with metakaolin. Its strength and durability aspects are comparable with a controlled concrete (without replacement of cement). In the present work, a new mix design methodology based on the efficiency of metakaolin is adopted. The optimum percentage replacement of cement with metakaolin is obtained based on compressive strength test results. The influence of metakaolin on the workability, compressive strength, splitting tensile strength and flexural strength of SCC and its behavior when subjected to elevated temperature was investigated through evaluation against controlled concrete and non-destructive testing. From the test results, it was observed that incorporation of metakaolin at an optimum dosage satisfied all the fresh properties of SCC and improved both the strength and durability performance of SCC compared to controlled concrete.


Concrete is a widely used material in all construction work. The aim of the project is to study the behavior of concrete with replacement of E waste. The fine aggregate and coarse aggregate are naturally available due to increase in demand it is over exploited. The waste utilization is sustainable solution to environmental problems Waste from electric and electronic equipment is used as an E waste replacement for coarse aggregate in concrete which is used in the construction .Therefore the effects have been made to study the use of E waste components as a partial replacement of coarse aggregate in 5%, 10% and 15%. To determine the optimum percentage of E waste that can be replaced for coarse aggregate the compressive strength and split tensile strength of concrete to be studied. After determining the optimum percentage of E waste that can be replaced with coarse aggregate. The comparison of the conventional and optimum percentage of E waste replaced with concrete has been done


2019 ◽  
Vol 9 (12) ◽  
pp. 2510 ◽  
Author(s):  
Gyeongcheol Choe ◽  
Sukpyo Kang ◽  
Hyeju Kang

In this study, a method was suggested to produce dried powder from red mud (RM) sludge with 40%–60% water content without heating. The RM sludge is discharged from the Bayer process, which is used to produce alumina from bauxite ores. Nonthermally treated RM (NTRM) powder was produced by mixing RM sludge (50%), paper sludge ash (PSA, 35%), and high-calcium fly ash (HCFA, 15%). The physicochemical properties of NTRM were investigated by analyzing its water content, X-ray fluorescence spectra, X-ray diffraction patterns, and particle size. Moreover, to examine the applicability of NTRM as a construction material, slag cement mortar in which 20 wt% of the binder was replaced with NTRM was produced, and the compressive strength, porosity, and water absorption rate of the mortar were evaluated. Results indicated that NTRM of acceptable quality was produced when the water content in RM sludge decreased and CaO contained in PSA and HCFA reacted with moisture and formed portlandite. The NTRM-mixed mortar requires further examination in terms of durability because of the increased capillary voids and high water absorption rate, but its compressive strength is sufficient to enable its use in sidewalks, bike roads, and parking lots.


Author(s):  
S. B. Kandekar ◽  
◽  
S. K. Wakchaure ◽  

Materials are the most important component of building construction. The demands of construction material are increasing day by day significantly. This demand is increasing the material prices and scarcity of material in construction industry. To achieve economical and eco-friendly criteria naturally occurring material is selected. Clay is a natural material and it can be available easily. This paper interprets the experimental investigation on strength of concrete using clay as a partial replacement to binder content (cement) in concrete. The replacement percentages are grouped as 0%, 10%, 20%, 30%, 40% of clay and 5% of hydrated lime with cement in each series in M25 grade of concrete. To achieve the pozzolanic property of clay hydrated lime was added. Different tests are performed to determine the optimum percentage of clay as a replacement for binder content (cement) in concrete. The Compressive strength test, split tensile strength test and flexural strength test were performed on the specimens. Total 90 cubes of size 150 mm were prepared for compressive strength test, 30 cylinders of 150 mm diameter and 300 mm height were prepared for split tensile strength test and 30 beams of size 150 mm x 150 mm x 1000 mm were prepared to carry out the flexural strength test. The results are compared to find the ideal proportion of clay as a replacement for cement. It is found that 10% replacement with 5% hydrated lime gives satisfactory results.


Now a days increase in population increases the demand of concrete for construction purpose and Aggregates are the important constituents in concrete.Re-use of demoliation waste avoids the problem of waste disposal and is also helpful in reducing the gap between demand and supply of fresh aggregates. This research deals with partial replacement of natural coarse aggregates (NCA) with recycled coarse aggregates (RCA) of age group 30 years and 35 years in different proportions like 20%, 30%, 40% . For this, M20 grade of concrete is adopted. Curing of specimens were done for 7days and 28 days to attain the maximum strengths. Partial replacement of fine aggregate with Granite powder at 5%, 10%, 15% were done to reduce the waste percentage as well to gain more strength. After casting the specimens of RCA with Granite powder replacement, curing was done and the specimens were tested for compressive and tensile strengths. Obtained results of compressive and tensile strengths of RCA concrete mix were compared with conventional concrete. In this direction, an experimental investigation of compressive and tensile strength was undertaken to use RCA as a partial replacement in concrete. It was observed that the concrete with recycled aggregates of 30years and 35years age group achieved maximum compressive strength of 29.03 N/mm2 , 28.96 N/mm2 and tensile strength of 11.91 N/mm2 , 10.34 N/mm2 were obtained at 40%replacement of RCA respectively. It is found that the compressive strength and Split tensile strength of RAC with copper slag was increased 8.20% and 2.90% when compared with the RAC.


Author(s):  
S.O Ajamu ◽  
I.A Raheem ◽  
S.B Attah ◽  
J.O Onicha

Natural river sand is one of the important constituent materials in concrete production while stone dust is a material obtained from crusher plants which is also sometimes being used either partially or fully in replacement of natural river sand in concrete production. Use of stone dust in concrete not only improves the quality of concrete but also conserve the natural river sand. However, due its scarcity and environmental degradation caused resulting from excessive mining of Natural river sand, there is need to investigate an alternative material of the same quality which can replace river sand in concrete production. In the present study, experiments were carried out to study the gradation of aggregates, workability, compressive strength and split tensile strength of concrete made using quarry dust as replacement of fine aggregate at 0, 25, 50, 75, and 100%. Grade M15 of concrete was produced with ordinary Portland cement (OPC) for referral concrete while M25 of concrete was prepared for compressive strength and split tensile strength concrete. Workability and Compressive strength were determined at different replacement level of fine aggregate and optimum replacement level was determined based on compressive strength. Results showed that by replacing 50% of fine aggregate with quarry dust, concrete of maximum compressive strength can be produced as compared to all other replacement levels. The effect of quarry dust on compressive strength and split tensile strength was investigated and from the overall result obtained, it was observed that the compressive strength and split tensile strength increased significantly for all the curing ages from 0% to 50% replacement level of quarry dust. Maximum value obtained for 28day compressive and tensile strength were 25N/mm2 and 2.3N/mm2 respectively and this occurred at 50% replacement.


2021 ◽  
Vol 11 (1) ◽  
pp. 6703-6707
Author(s):  
A. S. Buller ◽  
A .M. Buller ◽  
T. Ali ◽  
Z. A. Tunio ◽  
S. Shabbir ◽  
...  

This study experimentally investigates the mechanical and durability performance of bacteria concrete in terms of density, compressive strength, split tensile strength, and water absorption capacity. The concrete specimens were produced with a ratio of 1:2:4, w/c ratio of 0.45, and having a bacteria dosage level ranging from 1 to 6% by weight of water. To investigate the usefulness of the bacteria dosage level, cubic and cylindrical specimens were cast and tested after 28 days of water curing in a Universal Testing Machine with a constant loading rate. The density of each specimen was also recorded soon after casting and after the curing period ended. Moreover, the water absorption test was similarly conducted on cube specimens at various time intervals to record the penetration depth. The test results of normal concrete (without bacteria) were compared with the ones of the specimens containing bacteria. The optimum level of bacteria was found to be 3.5%, which showed the highest values in terms of compressive strength, split tensile strength, and density. Bacteria tend to generate more crystalline materials inside the concrete mass due to reactions with the surrounding moisture which produces a compact surface, thus strength properties were improved and water penetration was blocked which suggests better durability of the concrete.


In an attempt to renovate waste product into constructive material for the building purpose, this research considered the use of corn cob ash (CCA) as a partial replacement of cement. Hence, in this research, we have proposed an eco-friendly solution by investigating the utilization of corncob ash with 0, 5, 10 and 15% replacement for cement in M30 grade of concrete Mechanical Properties such as compressive strength, Split tensile strength and Flexural strength at 7,14,28 days are examined in laboratory. The results reveal that Corn Cob Ash can be used as a partial replacement for cement which in turn reduces the emission of greenhouse gases.


Author(s):  
Chevvu Krishnaveni

Abstract: Plastic pollution is one of the greatest causes of global warming. Disposal of large quantity of plastic waste products causes environmental & health issues .This report will discuss a solution to plastic pollution by conducting to recycle the plastic and reuse in concrete, so the waste plastic is recycled into plastic aggregates. This paper aims to enhance the concrete mechanical properties by replacement of natural coarse aggregate with recycled plastic aggregates and by adding polypropylene fibers in combination with high performance cement as a partial replacement of cement. This both combinations in concrete gave excellent values of compressive strength and tensile strength. Replacement of coarse aggregate weight by 5%, 10%, 15%, 20%, 25% of recycled plastics and for each replacement percentages polypropylene fibres of 0.5%, 1.0%, 1.5%, 2.0% with partial replacement of cement were conducted. In literature reported that the addition of recycled plastic causes the reduction of strength due to poor bonding between concrete and plastics, to overcome this problem the addition of polypropylene fibres which has a good bonding property will improve the concrete strength were added. Result shows that 15% replacement of natural aggregates with plastic aggregate achieves the maximum strength of concrete. Keywords: Re-cycled plastic aggregates, polypropylene fibres, high performance cement, compressive strength, split tensile strength.


Sign in / Sign up

Export Citation Format

Share Document