scholarly journals Fabrication of Instant Water Cooler Using Thermoelectric Module

Author(s):  
Bhushan Hirudkar ◽  
Prajwal Yesansure ◽  
Mayur Maurya ◽  
Vihang Chaudhary ◽  
Jayshri Tagde ◽  
...  

Hot and cold water is always needed for human being and we use different systems to get hot and cold water. The devices which are available in market for heating and cooling purpose have more costly and heavy like refrigerator, electric heater and solar water heater. So, we decide to make project on “fabrication of instant water cooler using thermoelectric module to get cold water and hot water at same time.” Peltier effect is used to get cold as well as hot water at same time with cheapest cost and applicable to use in residential area also. Our aim is toward developing a system which will provide cooling and heating effect at same time without moving mechanical parts. Thermoelectric cooling and heating system not require working fluids. This device can be used to cool water without refrigerants. And simultaneously heating can be achieved from the hot side of thermoelectric module to heat the water, this because of heat absorption and rejection using Peltier element. This compact design is very useful in elimination of CFC and it would replace refrigeration system.

2021 ◽  
Author(s):  
Swapnil S Bandgar ◽  
Suhas D Jagtap

The water cooler is a device which cools and dispenses water which is used to provide easy access to drinking water. The water coolers which are currently available in the market are works on the concept of VCR (Vapour Compression Refrigeration) System. These water coolers consume high electric power almost 250-350W, these systems also have huge impacts on the ecosystem due to CFC and HCFC emissions. Best alternative for existing VCR based water cooler is the system of evaporative cooling with thermoelectric cooler having affordable cost and eco-friendly. Hybrid water cooler works on the principle of evaporative cooling and Thermoelectric cooling, which provides cold water, hot water and it works as an Air cooler also. Evaporative cooling works on concept of evaporation of water and rate of evaporation is totally depending on humidity of surrounded air. By using evaporative cooling obtain the temperature difference of 8-10°C. During the hot day, the temperature of water in the water tank would be 40°C, then the evaporative cooling alone will not be sufficient to cool the water to 22°C, which is ideal temperature of water for drinking purpose. So, thermoelectric module works on principle of Peltier effect which can produce the temperature difference across its surfaces on applying potential difference across its terminals. As the thermoelectric module produce the temperature difference up to 40°C across its surface, it can easily cool the water to 20°C. More than 60% energy could be obtained by this system in comparison with respect to existing VCR based cooler, so this system can be used as an eco- friendly and cost effective.


2017 ◽  
Vol 28 (1) ◽  
pp. 76 ◽  
Author(s):  
G.D. Joubert ◽  
R.T. Dobson

The as-built and tested passive night-sky radiation cooling/heating system considered in this investigation consists of a radiation panel, a cold water storage tank, a hot water storage tank, a room and the interconnecting pipework. The stored cold water can be used to cool a room during the day, particularly in summer. A theoretical time-dependent thermal performance model was also developed and compared with the experimental results and it is shown that the theoretical simulation model captures the experimental system performance to within a reasonable degree of accuracy. A natural circulation experimental set-up was constructed and subsequently used to show that under local (Stellenbosch, South Africa) conditions the typical heat-removal rate from the water in the tank is 55 W/m2 of radiating panel during the night; during the day the water in the hot water-storage tank was heated from 24 °C to 62 °C at a rate of 96 W/m2. The system was also able to cool the room at a rate of 120 W/m3. The results thus confirmed that it is entirely plausible to design an entirely passive system, that is, without the use of any moving mechanical equipment such as pumps and active controls, for both room-cooling and water-heating. It is thus concluded that a passive night-sky radiation cooling/heating system is a viable energy-saving option and that the theoretical simulation, as presented, can be used with confidence as an energy-saving system design and evaluation tool. Keywords: passive cooling and heating, buoyancy-driven fluid flow, theoretical simulation, experimental verification Highlights:Passively driven renewable energy heating and cooling systems are considered.Time-dependent mathematical simulation model is presented.Experimental buoyancy-driven heating and cooling system built and tested.Experimental results demonstrate the applicability of the theoretical simulation model.Saving and evaluation design tool.


This paper presents a mathematical model to investigate the effect of intermediate water tank for cascade configuration of thermoelectric modules in heating and cooling application. The system consists of two thermoelectric modules separated by an intermediate water tank. Another surface of each thermoelectric module is in contact with cold water tank or hot water tank. In the simulation, both hot and cold water tanks consist one kilogram of water. The mass of water in the intermediate water tank was set to 0.01 kg (negligible thermal mass), 1 kg (equal thermal mass) and 10 kg (large thermal mass). Set point for hot and cold water tanks was 373 K and 276 K, respectively. It was found that intermediate water tank with higher thermal mass enable a better temperature control and produces higher Coefficient of Performance for both thermoelectric modules. These findings are essential for the development of a three-stage temperature water dispenser using thermoelectric modules


2013 ◽  
Vol 6 (2) ◽  
pp. 99-114 ◽  
Author(s):  
E. J. Pieterse-Quirijns ◽  
E. J. M. Blokker ◽  
E. van der Blom ◽  
J. H. G. Vreeburg

Abstract. Existing Dutch guidelines for the design of the drinking water and hot water system of non-residential buildings are based on outdated assumptions on peak water demand or on unfounded assumptions on hot water demand. They generally overestimate peak demand values required for the design of an efficient and reliable water system. Recently, a procedure was developed based on the end-use model SIMDEUM to derive design-demand-equations for peak demand values of both cold and hot water during various time steps for several types and sizes of non-residential buildings, viz. offices, hotels and nursing homes. In this paper, the design-demand-equations are validated with measurements of cold and hot water patterns on a per second base and with surveys. The good correlation between the simulated water demand patterns and the measured patterns indicates that the basis of the design-demand-equations, the SIMDEUM simulated standardised buildings, is solid. Surveys were held to investigate whether the construction of the standardised buildings based on the dominant variable corresponds with practice. Surveys show that it is difficult to find relationships to equip the standardised buildings with users and appliances. However, the validation proves that with a proper estimation of the number of users and appliances in only the dominant functional room of the standardised buildings, SIMDEUM renders a realistic cold and hot water diurnal demand pattern. Furthermore, the new design-demand-equations based on these standardised buildings give a better prediction of the measured peak values for cold water flow than the existing guidelines. Moreover, the new design-demand-equations can predict hot water use well. In this paper it is illustrated that the new design-demand-equations lead to reliable and improved designs of building installations and water heater capacity, resulting in more hygienic and economical installations.


2010 ◽  
Vol 129-131 ◽  
pp. 463-466
Author(s):  
Li Li Zhao ◽  
Zhi Jun Zhang ◽  
Shi Wei Zhang

The 3D physical model of the electrical water heater was built. The water-heater performance was resolved by computer fluid dynamics simulation (CFD). The heater performance is characterized by a new method rather than that the discharge efficiency, extraction efficiency and fraction of heat recoverable. The new method is based on the constant discharge water temperature and rate for end user, 5L/min and 43°C that include the hot water from EWH and cold water from outside EWH. But the water discharge rate from EWH was variable as the water temperature discharge from EWH was variable. Compared with the traditional method, it is more close to the user using reality condition.


2013 ◽  
Vol 827 ◽  
pp. 99-104
Author(s):  
Bin Li ◽  
Xi Chen ◽  
Xin Hao Li ◽  
Lu Kuan Ma ◽  
Wen Bo Lu ◽  
...  

Now in general use in solar water heater, there is a long pipeline between water heater and tap, we have to empty the stored cold water before we use the hot water; and usually the water cannot meet required temperature due to the heating delay effect, thus the water also should be emptied, which leads to a waste of water resources. In order to solve this water wastage, we propose a device which can help to control the temperature and backflow of the water in water heater. The device accomplishes backflow of cold water automatically under the effect of gravity, and refluxed water will be stored in the recycle-water tank, thus ensuring the result that the water temperature satisfies the requirement. After the recycle-water tank is full, it will trigger the buoy to control the relay switch, then the water pump start to work to force the water into the water heater tank. Thus, realizing the recycling of water. This device can significantly save water resources in domestic water, and it has a broad market prospect.


2007 ◽  
Vol 129 (4) ◽  
pp. 438-448 ◽  
Author(s):  
E. Andersen ◽  
S. Furbo

A theoretical analysis of differently designed solar combi systems is performed with weather data from the Danish Design Reference Year (55 deg N). Three solar combi system designs found on the market are investigated. The investigation focuses on the influence of stratification on the thermal performance under different operation conditions with different domestic hot water and space heating demands. The solar combi systems are initially equipped with heat exchanger spirals and direct inlets to the tank. A step-by-step investigation is performed demonstrating the influence on the thermal performance of using inlet stratification pipes at the different inlets. Also, how the design of the space heating system, the control system of the solar collectors, and the system size influence the thermal performance of solar combi systems are investigated. The work is carried out within the Solar Heating and Cooling Programme of the International Energy Agency (IEA SHC), Task 32.


The object of this enquiry is to find out how much heat can be gained, or cold lost from the body, by the local cooling or warming of a small part, by cooling the hands in a stream of cold water, warming the feet in a hot foot­ bath, or by a foot-warmer. In order to secure the beneficial effect of open windows, the breathing of cool air of low-vapour tension, and stimulation of body metabolism by such air ventilating the clothed and naked parts of the skin, the general heating of rooms by hot-water coils might be replaced by small heaters kept a few degrees above body temperature and locally applied to each individual, and each under the individual’s control. Electric heaters have been used by aeroplanists placed beneath their outer garments. One of us(l) recently published results showing that heating or cooling the hands can effectively heat or cool the whole body. We record further experiments of a like nature.


Author(s):  
Muhammad M. A. S. Mahmoud

This paper discusses domestic problem of waiting hot water for the shower use till it reaches satisfactory temperature, which result a lot of wastage in fresh water. The outcome from research survey shows that there is no satisfactory solution till now as all solutions were either expensive or with no effective results. Local small inline electric heater equipped with fuzzy logic controller is proposed in this paper to be installed just before the showerhead to measure the water temperature and flow before the showerhead, as control input-variables, and decide the operating voltage of the heater, as control output-variable. Matlab Simulink is used to model the proposed system. Different test cases are simulated to prove the performance and the safe operation of the system. Techno-economic study is carried out to determine the “Direct Benefits” and “Indirect Benefits” that can be achieved if such system is implemented in wide range. Azerbaijan data is taken as an example to calculate the economic benefits. The results show important benefits not only for economy but also for climate and the reduction of greenhouse gas emission. Different economic indices are provided to be an easy reference for decision makers and project managers.


2019 ◽  
Vol 41 (1) ◽  
pp. 35173 ◽  
Author(s):  
Alvaro Antonio Ochoa Villa ◽  
José Carlos Charamba Dutra ◽  
Jorge Recarte Henríquez Henríquez ◽  
Carlos Antonio Cabral do Santos ◽  
José Ângelo Peixoto da Costa

This work aims to transient performance of chiller single effect absorption refrigeration using the LiBr/H2O pair with nominal capacity of 35 kW. The goal of this study is to verify the absorption chiller when subjected to thermal loads and it transiently responsive as a function of the temperatures of the chilled, hot and cold water of the system. An experimental methodology was established in a micro-CHP laboratory to simulate the dynamic operating conditions of the system considering the thermal load (chilled water), the activation source (hot water) and the heat dissipation circuit (cold water). The thermal load was simulated from a set of electrical resistors installed in a water heater and the activation of the chiller from recovery gas a microturbine 30 kW and through a compact heat exchanger, where water is heated and stored in a hot buffer tank. The absorption chiller heat dissipation system consists of the pump and cooling tower. The system responded appropriately to the thermal load imposed providing COP values in the transient regime of 0.55 to 0.70 the temperature conditions tested.


Sign in / Sign up

Export Citation Format

Share Document