scholarly journals Drying of moist food snacks with innovative slot jet reattachment nozzle

Author(s):  
Milad Farzad ◽  
Mengqiao Yang ◽  
Jamal Seyed Yagoobi ◽  
B. Tilley

Drying of moist porous media such as paper, pulp and food products is one of the most energy intensive processes in industry. Impinging jet nozzles are commonly used in various drying processes. There have been many efforts to improve the transport characteristics of impinging jet nozzles. Utilizing innovative Slot Jet Reattachment (SJR) nozzle is an approach to make the drying process more efficient. This is mainly because these nozzles overcome the high flow rate constraint associated with the traditional Slot Jet (SJ) nozzle. In this paper, the drying characteristics of the SJR nozzle with exit angles of +20˚ and +45˚ are experimentally investigated. The samples used are snack cookies. The results are compared with those of SJ nozzle under the same mass flowrate. The results indicate that significant enhancements in drying rates are achievable with both SJR nozzles compared to SJ nozzle.Keywords: Drying; Porous Food Snack; Slot Jet Reattachment Nozzle; Slot Jet Nozzle  

Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 575
Author(s):  
Ze Zhang ◽  
Shuting Zhang

To improve indirect drying efficiency, the effect of soda residue on the drying characteristics of coking coal were studied using a self-made indirect drying system. A tube furnace was used in the dry distillation of coal samples with soda residue, and the coke properties were analyzed. The results indicated that the soda residue has a significant influence on the increase in the heating rate of coal samples in the temperature distribution range of 90 to 110 °C. With the addition of 2%, 5%, and 10% soda residue, the drying rates increased by 11.5%, 25.3%, and 37.3%, respectively at 110 °C. The results of dry distillation show that addition of 2%, 5% and 10% soda residue decreases the carbon loss quantity by 4.67, 4.99, and 8.82 g, respectively. The mechanical strength of coke samples satisfies the industrial conditions when the soda residue ratio ranges from 2% to 5%. Soda residue can improve the active point of coke dissolution reaction and inhibit coke internal solution. Economically, coking coal samples mixed with soda residue have an obvious energy saving advantage in the drying process. Energy saving analysis found that it can reduce cost input by 20% than that of the normal drying method.


2013 ◽  
Vol 724-725 ◽  
pp. 296-299
Author(s):  
Chun Xiang Chen ◽  
Xiao Qian Ma ◽  
Xiao Cong Li ◽  
Wei Ping Qin

To find out an alternative of coal saving, a kind of microalgae, Chlorella vulgaris (C. vulgaris) which is widespread in fresh water was studied by digital blast drying system. The effect of the moisture content, drying thickness and temperature on the drying process of C. vulgaris were investigated. The results indicated that when the drying temperature is high, the moisture content is low and the material thickness is small, the drying time is short. The drying process of C.vulgaris can be divided into two stages, and the mass loss is mainly occurred in the second stage . The results will provide guidance for design of drying process and dryer of microalgae.


Author(s):  
Ratthasak Prommas ◽  
Phadungsak Rattanadecho ◽  
Dulyachot Cholaseuk

2012 ◽  
Vol 29 (1) ◽  
pp. 341-358
Author(s):  
Abd El-Wahab S. Kassem ◽  
Abdulwahed M. Aboukarima ◽  
Hamza A. Morghany

2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Hong Thai Vu ◽  
Evangelos Tsotsas

The modelling and numerical simulation of the drying process in porous media are discussed in this work with the objective of presenting the drying problem as the system of governing equations, which is ready to be solved by many of the now widely available control-volume-based numerical tools. By reviewing the connection between the transport equations at the pore level and their up-scaled ones at the continuum level and then by transforming these equations into a format that can be solved by the control volume method, we would like to present an easy-to-use framework for studying the drying process in porous media. In order to take into account the microstructure of porous media in the format of pore-size distribution, the concept of bundle of capillaries is used to derive the needed transport parameters. Some numerical examples are presented to demonstrate the use of the presented formulas.


Author(s):  
Maria F. de Morais ◽  
José R. O. dos Santos ◽  
Marisângela P. dos Santos ◽  
Dyego da C. Santos ◽  
Tiago N. da Costa ◽  
...  

ABSTRACT This study aimed to dry ‘bacaba’ (Oenocarpus bacaba Mart.) pulp under different thermal conditions, fit different mathematical models to the dehydration curves, and calculate the diffusion coefficients, activation energy and thermodynamic properties of the process. ‘Bacaba’ fruits were meshed to obtain the pulp, which was dried at temperatures of 40, 50 and 60 °C and with thickness of 1.0 cm. Increase in drying temperature reduced the dehydration times, as well as the equilibrium moisture contents, and drying rates of 0.65, 1.04 and 1.25 kg kg min-1 were recorded at the beginning of the process for temperatures of 40, 50 and 60 °C, respectively. The Midilli’s equation was selected as the most appropriate to predict the drying phenomenon, showing the highest R2, lowest values of mean square deviation (MSD) and χ2 under most thermal conditions, and random distribution of residuals under all experimental conditions. The effective diffusion coefficients increased with increasing temperature, with magnitudes of the order of 10-9 m2 s-1, being satisfactorily described by the Arrhenius equation, which showed activation energy (Ea) of 37.01 kJ mol-1. The drying process was characterized as endergonic, in which enthalpy (ΔH) and entropy (ΔS) reduced with the increment of temperature, while Gibbs free energy (ΔG) was increased.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 350 ◽  
Author(s):  
Wengang Hao ◽  
Shuonan Liu ◽  
Baoqi Mi ◽  
Yanhua Lai

A new hybrid solar dryer was designed and constructed in this study, which consisted of a flat-plate solar collector with dual-function (DF-FPSC), drying chamber with glass, fan etc. The DF-FPSC was firstly applied in drying agricultural products. The innovative application of hybrid solar dryer can control the drying chamber air temperature within a suitable range by different operation strategies. Drying experiments for lemon slices in the hybrid solar dryer were conducted by comparing open sun drying (OSD). Eight mathematical models of drying characteristics were employed to select the most suitable model for describing the drying curves of lemon slices. Furthermore, energy, exergy economic and environment (4E) analysis were also adopted to analyze the drying process of lemon slices. The results show that under the same experimental condition, the drying capability of the hybrid solar dryer was stronger than that of OSD. Meanwhile, it was found that the Two term and Wang and Singh models were the most suitable for fitting the lemon slices’ drying characteristics inside the hybrid solar dryer. The drying chamber air temperature can be controlled under about 60 °C during the process of lemon slices’ drying. The experimental results show the feasibility and validity of the proposed hybrid solar dryer.


1989 ◽  
Vol 155 ◽  
Author(s):  
R. A. Lipeles ◽  
D. J. Coleman

ABSTRACTThe evaporation of organic by-products released during drying of 1-mm thick silicon tetramethoxide gels was analyzed using gas chromatography. The evaporation kinetics of methanol depended on the drying rate achieved by flowing dry air over the gel. For drying at flow rates less than 50 cm 3/min, exponential kinetics were observed initially with a long time constant (about 100- to 400-min). For drying rates greater than 70 cm3/min, diffusional (t−1/2) kinetics were observed initially. Cracking of the gel during drying was used to indicate the degree of stress. At low drying rates, minor cracking was observed near the edges of the gel. At high flow rates, extensive cracking was observed in samples that exhibited early t−1/2 kinetics. Monitoring the kinetics of drying is essential to optimizing the drying conditions to minimize stress and cracking in gels.


Sign in / Sign up

Export Citation Format

Share Document