scholarly journals Preparation and mechanical properties of Nanoclay-MWCNT/Epoxy hybrid nanocomposites

2021 ◽  
Vol 2 (1) ◽  
pp. 17
Author(s):  
Sunil Kumar ◽  
Arun Gupta

<p>Among the various kinds of reinforcing element, Multi Wall Carbon Nano-tubes (MWCNT) and Nanoclay have found much more attention as a filler element to upgrade the mechanical properties of polymer composite material. In this paper, production of hybrid nanocomposites and the effect of MWCNT and nanoclay on mechanical properties of hybrid nanocomposites have been evaluated. In hybrid nanocomposites, MWCNT and nanoclay are embedded in epoxy resin. The processing of hybrid nanocomposite is always been a difficult task for researcher to prepare defects free samples. Here, the processing of Epoxy/Nanoclay-MWCNT hybrid composites has been done by using homogenizer and ultrasonic techniques for complete dispersion of nanoparticles into epoxy resin. The MWCNT and nanoclay were embedded into epoxy resin in different weight fractions and mixtures were used for tensile test and hardness specimen production. The tensile modulus and tensile strength values have been calculated via tensile tests. The test result shows that tensile modulus of samples increases as the filler content increase up to certain extent but then start decreasing. Also the elongation reduces as the filler content rises in the epoxy which shows the brittleness present in the samples. Rockwell hardness on B-scale was conducted on Nanocomposite samples and found that increasing the filler content excessively does not improve hardness as much.</p>

Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 94
Author(s):  
Sajid Hussian Siyal ◽  
Subhan Ali Jogi ◽  
Salman Muhammadi ◽  
Zubair Ahmed Laghari ◽  
Sadam Ali Khichi ◽  
...  

Hybrid composites have great potential for specific strength and specific stiffness, effective in aerospace industries, submarines, and light-weight automotives. The mechanical strength and adhesiveness of hybrid laminates can be enhanced by effective use of matrix materials in different ratios of epoxy resin and epoxy hardener. Gentle use of resin and hardener in the fabrication of hybrid composites can alter tensile modulus, the bonding strength between matrix and fabric. Spectacular progress has been achieved by the selection of appropriate amounts of resin and hardener in the hybridization of composite laminate. Hybridization was made by Kevlar inorganic/organic fabrics and glass fabrics stacked with epoxy matrix material. To achieve the combination of mechanical properties and bonding strength, transparent epoxy resin and hardener of commercial grades mixed in various ratios are incorporated as matrix material to fabricate laminate. Three different sheets, named A (3:2), B (4:1), and C (2:3), were embedded by the hand layup method to prepare a hybrid composite. Experimental tests, according to ASTM 3039, were performed to determine the tensile mechanical properties. Peel tests, according to ASTM 6862-11, were performed to investigate the interlaminar strength between Kevlar and glass layers. Shore A and Shore C hardness durometers were used to find out the hardness of the specimens at different spots using the ASTM D-2240 standard. Finally, physical testing, such as density and then water absorption, was carried out using the ASTM D-570 standard to check the swelling ratio of the different specimens. The results obtained highlight that the specimen of the glass/Kevlar hybrid embedded in the ratio 3:2 in lamination has the best mechanical properties (tensile strength and hardness) and the lowest swelling ratio, while the material system in the ratio 4:1 shows the best interlaminar properties and adhesion capabilities.


2013 ◽  
Vol 668 ◽  
pp. 80-84
Author(s):  
Zhong Cheng Zhou ◽  
Xiong Jun Shen ◽  
Xin Fan ◽  
Qiu Mei Wu ◽  
Hai Lin Yang ◽  
...  

Nanocrystals hydroxyapatite (nHA) was synthesized and modified chemically, and nanocrystals hydroxyapatite / poly(L-lactide)/poly(ethylene succinate)(nHA/PLLA/PES) composite was prepared by melt-blending using nHA, PLLA and PES as reactants in a stainless steel chamber. The obtained nHA was of high purity and high crystallinity as well, its mean sizes measured from TEM observations were 65±35nm (long axis) and 40±10nm (short axis), and are close to the endosteal needle hydroxyapatite crystals size ((15 ~ 20) nm×60 nm) in the human body. The mechanical properties of nHA/ PLLA/PES blends were determined by bending and tensile tests and the effects of nHA content on the mechanical properties of nHA/PLLA/PES blends were investigated. The blending modulus and tensile modulus increase with the nHA (0,5,10,15and 20 wt.%) content increase, while blending strength increases up to HA mass fraction of 10% and after that decreases. SEM images revealed that the surface changed from rough to smooth with increasing nHA content, especially with nHA content higher than 20%, which implied the failure mechanism of the material changes from ductile to brittle.


2015 ◽  
Vol 55 (3) ◽  
Author(s):  
Anna Borisova ◽  
Tatiana Glaskova-Kuzmina ◽  
Andrey Aniskevich

Dilatometric tests, thermal mechanical analysis (TMA), quasistatic tensile tests, hydrostatic weighting, and scanning electron microscopy (SEM) were performed on the multiwalled carbon nanotube (MWCNT)/epoxy nanocomposite (NC) with different filler content (c = 0–3.8% wt.) in order to determine the influence of MWCNT content on the thermophysical and mechanical properties of NC. The experimental results show the physical properties versus the nanofiller content and the existence of the optimal MWCNT content (1% wt.) in epoxy resin that maximally improves the thermophysical properties of NC in comparison with unfilled epoxy. Thus, NC with 1% wt. filler content shows the maximal decrease of thermal expansion coefficient by 68%, the maximal increase of glass transition temperature and tensile strength by 23 °C and 18%, respectively. Comparing the results it can be seen that after exceeding the defined optimal filler content over 1% wt. the investigated properties get worse. The correlation between the investigated mechanical and thermophysical properties is estimated and reported.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mahmoud Haghighi ◽  
Hossein Golestanian ◽  
Farshid Aghadavoudi

Abstract In this paper, the effects of filler content and the use of hybrid nanofillers on agglomeration and nanocomposite mechanical properties such as elastic moduli, ultimate strength and elongation to failure are investigated experimentally. In addition, thermoset epoxy-based two-phase and hybrid nanocomposites are simulated using multiscale modeling techniques. First, molecular dynamics simulation is carried out at nanoscale considering the interphase. Next, finite element method and micromechanical modeling are used for micro and macro scale modeling of nanocomposites. Nanocomposite samples containing carbon nanotubes, graphene nanoplatelets, and hybrid nanofillers with different filler contents are prepared and are tested. Also, field emission scanning electron microscopy is used to take micrographs from samples’ fracture surfaces. The results indicate that in two-phase nanocomposites, elastic modulus and ultimate strength increase while nanocomposite elongation to failure decreases with reinforcement weight fraction. In addition, nanofiller agglomeration occurred at high nanofiller contents especially higher than 0.75 wt% in the two-phase nanocomposites. Nanofiller agglomeration was observed to be much lower in the hybrid nanocomposite samples. Therefore, using hybrid nanofillers delays/prevents agglomeration and improves mechanical properties of nanocomposite at the same total filler content.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4169
Author(s):  
Marcel Zambrzycki ◽  
Krystian Sokolowski ◽  
Maciej Gubernat ◽  
Aneta Fraczek-Szczypta

In this work, we present a comparative study of the impact of secondary carbon nanofillers on the electrical and thermal conductivity, thermal stability, and mechanical properties of hybrid conductive polymer composites (CPC) based on high loadings of synthetic graphite and epoxy resin. Two different carbon nanofillers were chosen for the investigation—low-cost multi-layered graphene nanoplatelets (GN) and carbon black (CB), which were aimed at improving the overall performance of composites. The samples were obtained by a simple, inexpensive, and effective compression molding technique, and were investigated by the means of, i.a., scanning electron microscopy, Raman spectroscopy, electrical conductivity measurements, laser flash analysis, and thermogravimetry. The tests performed revealed that, due to the exceptional electronic transport properties of GN, its relatively low specific surface area, good aspect ratio, and nanometric sizes of particles, a notable improvement in the overall characteristics of the composites (best results for 4 wt % of GN; σ = 266.7 S cm−1; λ = 40.6 W mK−1; fl. strength = 40.1 MPa). In turn, the addition of CB resulted in a limited improvement in mechanical properties, and a deterioration in electrical and thermal properties, mainly due to the too high specific surface area of this nanofiller. The results obtained were compared with US Department of Energy recommendations regarding properties of materials for bipolar plates in fuel cells. As shown, the materials developed significantly exceed the recommended values of the majority of the most important parameters, indicating high potential application of the composites obtained.


2021 ◽  
Vol 3 (6) ◽  
Author(s):  
Seyed Ali Mirsalehi ◽  
Amir Ali Youzbashi ◽  
Amjad Sazgar

AbstractIn this study, epoxy hybrid nanocomposites reinforced by carbon fibers (CFs) were fabricated by a filament winding. To improve out-of-plane (transverse) mechanical properties, 0.5 and 1.0 Wt.% multi-walled carbon nanotubes (MWCNTs) were embedded into epoxy/CF composites. The MWCNTs were well dispersed into the epoxy resin without using any additives. The transverse mechanical properties of epoxy/MWCNT/CF hybrid nanocomposites were evaluated by the tensile test in the vertical direction to the CFs (90º tensile) and flexural tests. The fracture surfaces of composites were studied by scanning electron microscopy (SEM). The SEM observations showed that the bridging of the MWCNTs is one of the mechanisms of transverse mechanical properties enhancement in the epoxy/MWCNT/CF composites. The results of the 90º tensile test proved that the tensile strength and elongation at break of nanocomposite with 1.0 Wt.% MWCNTs improved up to 53% and 50% in comparison with epoxy/CF laminate composite, respectively. Furthermore, the flexural strength, secant modulus, and elongation of epoxy/1.0 Wt.% MWCNT/CF hybrid nanocomposite increased 15%, 7%, and 9% compared to epoxy/CF laminate composite, respectively.


2021 ◽  
Author(s):  
DANDAN ZHANG ◽  
XINGKANG SHE ◽  
YIPENG HE ◽  
WESLEY A. CHAPKIN, ◽  
VI T. BREGMAN ◽  
...  

Carbon fiber reinforced polymer (CFRP) composites are lightweight materials with superior strength but are expensive due to the increased cost of carbon fibers (CFs). The addition of carbon nanotubes (CNTs) to polymer nanocomposites are becoming an excellent alternative to CF due to their unique combination of electrical, thermal, and mechanical properties. With the application of an electric field across the CNT/polymer mixture before curing, CNTs will not only be aligned along the electric field direction, but also form networks after reaching to a certain degree of alignment. In this study, an alternating current (AC) electric field was applied continuously to CNT/CF/Epoxy hybrid composites before curing. By cutting off the applied voltage when the monitored electric current increased, the degree of networking of CNTs between two CF tows was controlled. The relative electric field strength around the end of conductive carbon fiber tows in the epoxy matrix was modeled using COMSOL Multiphysics. It increased after applying AC electric field parallel to the CF tows, thereby increasing the alignment degree of CNTs and building a network to bridge the CF tows. The preliminary results indicate that the microhardness and tensile modulus between two CF tows are increased due to the networking of CNTs in this area. The fracture surface of the specimens after tensile tests were characterized to reveal more details of the microstructure.


2015 ◽  
Vol 766-767 ◽  
pp. 199-204 ◽  
Author(s):  
Kumar Jayachandran Nirmal ◽  
D. Premkumar

An experimental analysis has been carried out to investigate the mechanical properties of composites reinforced by sisal, coir, and banana fibres into epoxy resin matrix. The natural fibres were extracted by retting and manual processes. The composites fabricated by epoxy resin and reinforcement in the hybrid combination of Sisal-Banana and Sisal-Coir with the volume fraction of fibres varying from 5% to 30%. It has been identified that the mechanical properties increase with the increase of volume fraction of fibres to a certain extent and then decreases. The hybridization of the reinforcement in the composite shows greater mechanical properties when compared to individual type of natural fibres reinforced. For all the composites tested, the tensile strength of the composite increased up to 25% of volume fraction of the fibres and further for the increase in the volume fraction of fibre the mechanical properties were decreased. As same as tensile properties, the flexural and impact strength also increased linearly up to 25% of volume fraction of fibres and further for the increase in the volume fraction of fibre the mechanical properties were slightly decreased. Key Words: Sisal, Banana, Coir, Epoxy, Hybrid composite.


Author(s):  
E.N. Kablov ◽  
◽  
G.S. Kulagina ◽  
G.F. Zhelezina ◽  
S.L. Lonskii ◽  
...  

This paper studies a polymer composite material - a unidirectional organoplastic based on Rusar-NT aramid fiber and a melt epoxy-polysulfone binder. Organoplastic has the following mechanical properties: tensile strength 2060 MPa, Young's modulus 101 GPa. The microstructure of the fiber and the polymer matrix in the organoplastic samples was studied before and after tensile tests. The features of the formation of the binder structure depending on the packing density of the fibers in organoplastics have been determined. The nature of the destruction of fibers and polymer matrix caused by the uniaxial tension has been studied.


Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 109 ◽  
Author(s):  
Hom Nath Dhakal ◽  
Mohini Sain

The effect of unidirectional (UD) carbon fibre hybridisation on the tensile properties of flax fibre epoxy composite was investigated. Composites containing different fibre ply orientations were fabricated using vacuum infusion with a symmetrical ply structure of 0/+45/−45/90/90/−45/+45/0. Tensile tests were performed to characterise the tensile performance of plain flax/epoxy, carbon/flax/epoxy, and plain carbon/epoxy composite laminates. The experimental results showed that the carbon/flax fibre hybrid system exhibited significantly improved tensile properties over plain flax fibre composites, increasing the tensile strength from 68.12 MPa for plain flax/epoxy composite to 517.66 MPa (670% increase) and tensile modulus from 4.67 GPa for flax/epoxy to 18.91 GPa (305% increase) for carbon/flax hybrid composite. The failure mechanism was characterised by examining the fractured surfaces of tensile tested specimens using environmental scanning electron microscopy (E-SEM). It was evidenced that interactions between hybrid ply interfaces and strain to failure of the reinforcing fibres were the critical factors for governing tensile properties and failure modes of hybrid composites.


Sign in / Sign up

Export Citation Format

Share Document