scholarly journals Selecting and Installing Energy-Efficient Windows to Improve Dwelling Sustainability

Author(s):  
Avi Friedman ◽  
Morgan Matheson

<p>Windows play a significant role in achieving comfort in buildings by letting in natural light, solar warmth, fresh air and permitting outdoor views. On the other hand, poor quality windows can be the source of overheating or unwanted infiltration or exfiltration of air. Quality windows, therefore, influence the dwelling’s energy consumption and consequently its sustainability. Heat losses through the building envelope can occur in any of three mechanisms: conduction, convection and radiation. In all cases, windows are the “weakest link”. As such, windows represent the most important investment in the construction or renovation of any dwelling. They are also highly variable in price, appearance and performance, making their selection an ambiguous and sometimes difficult process. This paper examines a window unit’s energy performance and provides guidelines for its selection, installation and integration into the home’s design.</p>

2019 ◽  
Vol 11 (23) ◽  
pp. 6872 ◽  
Author(s):  
Pathomthat Chiradeja ◽  
Atthapol Ngaopitakkul

The building envelope has a direct impact on the overall energy consumption of a building. Thus, an improvement in the building envelope using energy-efficient material can yield the desired energy performance. This study is based on the materials and compositions used in building envelopes in compliance with the building energy code of Thailand. The building under study is an educational building located in Bangkok, Thailand. Both the energy and the economic aspects of retrofitted building envelopes are discussed in this study. The energy performance was evaluated by calculating the thermal transfer value and whole building energy consumption using the building energy code (BEC) software. The simulation was done under the assumption that the building envelope in the case study building was retrofitted with different materials and compositions. The study determines the feasibility of retrofitting buildings using energy-efficient material by utilizing the discounted payback period and internal rate of return (IRR) as indicators. The results show that retrofitted building envelopes in every case can reduce the whole building energy consumption. In the best envelope configuration, energy consumption can decrease by 65%. In addition, the economic potential is also high, with an IRR value of approximately 15% and a payback period of 23 less than nine years. These finding indicate that a building envelope made with energy-efficient material can achieve good results for both energy performance and economic feasibility.


2020 ◽  
pp. 50-64
Author(s):  
Kuladeep Kumar Sadevi ◽  
Avlokita Agrawal

With the rise in awareness of energy efficient buildings and adoption of mandatory energy conservation codes across the globe, significant change is being observed in the way the buildings are designed. With the launch of Energy Conservation Building Code (ECBC) in India, climate responsive designs and passive cooling techniques are being explored increasingly in building designs. Of all the building envelope components, roof surface has been identified as the most significant with respect to the heat gain due to the incident solar radiation on buildings, especially in tropical climatic conditions. Since ECBC specifies stringent U-Values for roof assembly, use of insulating materials is becoming popular. Along with insulation, the shading of the roof is also observed to be an important strategy for improving thermal performance of the building, especially in Warm and humid climatic conditions. This study intends to assess the impact of roof shading on building’s energy performance in comparison to that of exposed roof with insulation. A typical office building with specific geometry and schedules has been identified as base case model for this study. This building is simulated using energy modelling software ‘Design Builder’ with base case parameters as prescribed in ECBC. Further, the same building has been simulated parametrically adjusting the amount of roof insulation and roof shading simultaneously. The overall energy consumption and the envelope performance of the top floor are extracted for analysis. The results indicate that the roof shading is an effective passive cooling strategy for both naturally ventilated and air conditioned buildings in Warm and humid climates of India. It is also observed that a fully shaded roof outperforms the insulated roof as per ECBC prescription. Provision of shading over roof reduces the annual energy consumption of building in case of both insulated and uninsulated roofs. However, the impact is higher for uninsulated roofs (U-Value of 3.933 W/m2K), being 4.18% as compared to 0.59% for insulated roofs (U-Value of 0.33 W/m2K).While the general assumption is that roof insulation helps in reducing the energy consumption in tropical buildings, it is observed to be the other way when insulation is provided with roof shading. It is due to restricted heat loss during night.


2021 ◽  
Vol 13 (8) ◽  
pp. 4175
Author(s):  
Islam Boukhelkhal ◽  
Fatiha Bourbia

The building envelope is the barrier between the interior and exterior environments. It has many important functions, including protecting the interior space from the climatic variations through its envelope materials and design elements, as well as reduction of energy consumption and improving indoor thermal comfort. Furthermore, exterior building sidings, in addition to their aesthetic appearance, can have useful textures for reducing solar gains and providing good thermal insulation performance. This research examined and evaluated the effect of external siding texture and geometry on energy performance. For this objective, a field in situ testing and investigation of surface temperature was carried out on four samples (test boxes) with different exterior textures and different orientations, under the climate zone of Constantine–Algeria during the summer period. The results indicated significant dependability between the exterior texture geometry, the percentage of shadow projected, and external surface temperature. The second part of the research involved a similar approach, exploring the effect of three types of particles with the same appearance but with different thermal characteristics. It was concluded that the natural plant aggregates “palm particles” had the best performance, which contributed to a significant reduction of external surface temperature reaching 4.3 °C, which meant decreasing the energy consumption.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Seyedeh Samaneh Golzan ◽  
Mina Pouyanmehr ◽  
Hassan Sadeghi Naeini

PurposeThe modular dynamic façade (MDF) concept could be an approach in a comfort-centric design through proper integration with energy-efficient buildings. This study focuses on obtaining and/or calculating an efficient angle of the MDF, which would lead to the optimum performance in daylight availability and energy consumption in a single south-faced official space located in the hot-arid climate of Yazd, Iran.Design/methodology/approachThe methodology consists of three fundamental parts: (1) based on previous related studies, a diamond-based dynamic skin façade was applied to a south-faced office building in a hot-arid climate; (2) the daylighting and energy performance of the model were simulated annually; and (3) the data obtained from the simulation were compared to reach the optimum angle of the MDF.FindingsThe results showed that when the angle of the MDF openings was set at 30°, it could decrease energy consumption by 41.32% annually, while daylight simulation pointed that the space experienced the minimum possible glare at this angle. Therefore, the angle of 30° was established as the optimum angle, which could be the basis for future investment in responsive building envelopes.Originality/valueThis angular study simultaneously assesses the daylight availability, visual comfort and energy consumption on a MDF in a hot-arid climate.


Buildings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 491
Author(s):  
Jorge González ◽  
Carlos Alberto Pereira Soares ◽  
Mohammad Najjar ◽  
Assed N. Haddad

Linking Building Information Modelling and Building Energy Modelling methodologies appear as a tool for the energy performance analysis of a dwelling, being able to build the physical model via Autodesk Revit and simulating the energy modeling with its complement Autodesk Insight. A residential two-story house was evaluated in five different locations within distinct climatic zones to reduce its electricity demand. Experimental Design is used as a methodological tool to define the possible arrangement of results emitted via Autodesk Insight that exhibits the minor electric demand, considering three variables: Lighting efficiency, Plug-Load Efficiency, and HVAC systems. The analysis concluded that while the higher the efficiency of lighting and applications, the lower the electric demand. In addition, the type of climate and thermal characteristics of the materials that conform to the building envelope have significant effects on the energetic performance. The adjustment of different energetic measures and its comparison with other climatic zones enable decision-makers to choose the best combination of variables for developing strategies to lower the electric demand towards energy-efficient buildings.


2021 ◽  
Author(s):  
Abdulqader Mahmoud ◽  
Frederic Vanderveken ◽  
Florin Ciubotaru ◽  
Christoph Adelmann ◽  
Said Hamdioui ◽  
...  

In this paper, we propose an energy efficient SW based approximate 4:2 compressor comprising a 3-input and a 5-input Majority gate. We validate our proposal by means of micromagnetic simulations, and assess and compare its performance with one of the state-of-the-art SW, 45nm CMOS, and Spin-CMOS counterparts. The evaluation results indicate that the proposed compressor consumes 31.5\% less energy in comparison with its accurate SW design version. Furthermore, it has the same energy consumption and error rate as the approximate compressor with Directional Coupler (DC), but it exhibits 3x lower delay. In addition, it consumes 14% less energy, while having 17% lower average error rate than the approximate 45nm CMOS counterpart. When compared with the other emerging technologies, the proposed compressor outperforms approximate Spin-CMOS based compressor by 3 orders of magnitude in term of energy consumption while providing the same error rate. Finally, the proposed compressor requires the smallest chip real-estate measured in terms of devices.


2019 ◽  
Vol 9 (4) ◽  
pp. 30
Author(s):  
Prashanthi Metku ◽  
Ramu Seva ◽  
Minsu Choi

Stochastic computing (SC) is an emerging low-cost computation paradigm for efficient approximation. It processes data in forms of probabilities and offers excellent progressive accuracy. Since SC’s accuracy heavily depends on the stochastic bitstream length, generating acceptable approximate results while minimizing the bitstream length is one of the major challenges in SC, as energy consumption tends to linearly increase with bitstream length. To address this issue, a novel energy-performance scalable approach based on quasi-stochastic number generators is proposed and validated in this work. Compared to conventional approaches, the proposed methodology utilizes a novel algorithm to estimate the computation time based on the accuracy. The proposed methodology is tested and verified on a stochastic edge detection circuit to showcase its viability. Results prove that the proposed approach offers a 12–60% reduction in execution time and a 12–78% decrease in the energy consumption relative to the conventional counterpart. This excellent scalability between energy and performance could be potentially beneficial to certain application domains such as image processing and machine learning, where power and time-efficient approximation is desired.


2014 ◽  
Vol 18 (3) ◽  
pp. 925-934 ◽  
Author(s):  
Meghana Charde ◽  
Sourabh Bhati ◽  
Ayushman Kheterpal ◽  
Rajiv Gupta

Energy efficient building technologies can reduce energy consumption in buildings. In present paper effect of designed static sunshade, brick cavity wall with brick projections and their combined effect on indoor air temperature has been analyzed by constructing three test rooms each of habitable dimensions (3.0 m ? 4.0 m ? 3.0 m) and studying hourly temperatures on typical days for one month in summer and winter each. The three rooms have also been simulated using a software and the results have been compared with the experimental results. Designed static sunshade increased indoor air temperature in winter while proposed brick cavity wall with brick projections lowered it in summer. Combined effect of building elements lowered indoor air temperature in summer and increased it in winter as compared to outdoor air temperature. It is thus useful for energy conservation in buildings in composite climate.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Stephen O. Eromobor ◽  
Dillip Kumar Das ◽  
Fidelis Emuze

PurposeArguments for the design of sustainable university buildings have emerged in South Africa. Energy being a major determinant of the sustainability of buildings, the purpose of this study was to examine the influence of various building and indoor environmental parameters on the energy performance of university buildings in South Africa.Design/methodology/approachA quantitative survey research method, administered within the context of university buildings in South Africa, was used. Data about 16 buildings from three universities were collected. Relevant, inferential statistical analyses were conducted to examine the relative influence of the building parameters on the energy consumed in the buildings. Also, regression models within building parameters were developed independently and in a combination that could be used to estimate energy consumption in the university buildings.FindingsFindings suggested that building and indoor environmental parameters of humidity, indoor temperature, volume, illumination, and window width ratio (WWR), in that order, influenced energy consumption significantly, and also, had direct empirical relationships.Practical implicationsOptimising the building and indoor environmental parameters in design will enhance energy-efficiency in university buildings in South Africa.Originality/valueThis study contributes to the literature in terms of understanding the order of influence of building parameters on energy consumption in university buildings in the temperate climatic zone of South Africa. It also established empirical models between building and indoor environmental parameters and energy consumption, both independently and in combination, that could assist in designing energy-efficient and sustainable university buildings.


2014 ◽  
Vol 1041 ◽  
pp. 105-108
Author(s):  
Anna Sedláková ◽  
Pavol Majdlen ◽  
Ladislav Ťažký

The building envelope is a barrier that separates the internal environment from the effects of weather. This barrier ought to facilitate the optimal comfort of the interior environment in winter as well as summer. It has been shown in practice that most building defects occur within the building envelope. This includes external walls, roofs and floors too, and is impartial to new or renovated buildings. Heat losses of buildings through external constructions – roof, external walls, ground slabs are not negligible. It is therefore important to pay more attention to these construction elements. Basementless buildings situated on the ground are in direct contact with the subgrade and its thermal state. An amount of heat primarily destined for the creation of thermal comfort in the interior escapes from the baseplate to the cooler subgrade. The outgoing heat represents heat losses, which unfavourably affect the overall energy efficiency of the building. The heat losses represent approximately 15 to 20 % of the overall heat losses of the building. This number is a clear antecedent for the need to isolate and minimalize heat flow from the building to the subgrade.


Sign in / Sign up

Export Citation Format

Share Document