scholarly journals The role of contextual signal TGF-β1 inducer of epithelial mesenchymal transition in metastatic lung adenocarcinoma patients with brain metastases: an update on its pathological significance and therapeutic potential

2019 ◽  
Vol 23 (4) ◽  
pp. 187-194 ◽  
Author(s):  
Kelvin Piña Batista ◽  
Kenia Piña ◽  
Aida Ramos ◽  
Ivan Fernandez Vega ◽  
Antonio Saiz ◽  
...  
2020 ◽  
Vol 11 (12) ◽  
Author(s):  
Hongli Li ◽  
Qingjie Mu ◽  
Guoxin Zhang ◽  
Zhixin Shen ◽  
Yuanyuan Zhang ◽  
...  

AbstractIncreasing lines of evidence indicate the role of long non-coding RNAs (LncRNAs) in gene regulation and tumor development. Hence, it is important to elucidate the mechanisms of LncRNAs underlying the proliferation, metastasis, and invasion of lung adenocarcinoma (LUAD). We employed microarrays to screen LncRNAs in LUAD tissues with and without lymph node metastasis and revealed their effects on LUAD. Among them, Linc00426 was selected for further exploration in its expression, the biological significance, and the underlying molecular mechanisms. Linc00426 exhibits ectopic expression in LUAD tissues and cells. The ectopic expression has been clinically linked to tumor size, lymphatic metastasis, and tumor differentiation of patients with LUAD. The deregulation of Linc00426 contributes to a notable impairment in proliferation, invasion, metastasis, and epithelial–mesenchymal transition (EMT) in vitro and in vivo. Mechanistically, the deregulation of Linc00426 could reduce cytoskeleton rearrangement and matrix metalloproteinase expression. Meanwhile, decreasing the level of Linc00426 or increasing miR-455-5p could down-regulate the level of UBE2V1. Thus, Linc00426 may act as a competing endogenous RNA (ceRNA) to abate miR-455-5p-dependent UBE2V1 reduction. We conclude that Linc00426 accelerates LUAD progression by acting as a molecular sponge to regulate miR-455-5p, and may be a potential novel tumor marker for LUAD.


2019 ◽  
Vol 41 (5) ◽  
pp. 699-710 ◽  
Author(s):  
Yan-Jin Liu ◽  
Yu-Ju Chang ◽  
Yu-Ting Kuo ◽  
Po-Huang Liang

Abstract Metastasis, the movement of cancer cells from one site to another, is responsible for the highest number of cancer deaths, especially in lung cancer patients. In this study, we first identified a prognostic marker of lung adenocarcinoma, TCP-1 β subunit (chaperonin-containing TCP-1β; CCT-β). We showed a compound that disrupted the interaction of CCT-β with β-tubulin killed a highly metastatic non-small cell lung cancer cell line CL1-5 through inducing Endoplasmic reticulum stress and caspases activation. Moreover, at the dosage of EC20, the compound inhibited migration and invasion of the lung cancer cells by suppressing matrix metalloproteinase (MMP)-2/9 and epithelial–mesenchymal transition (EMT)-related proteins through downregulating mitogen-activated protein kinases (MAPKs), Akt/β-catenin and integrin–focal adhesion kinase signaling pathways. Unlike the anticancer drugs, such as Taxol, that target the adenosine triphosphate site of β-tubulin, this study reveals a therapeutic target, β-tubulin/CCT-β complex, for metastatic human lung adenocarcinoma. The study demonstrated CCT-β as a prognostic marker. Targeting β-tubulin/CCT-β complex caused apoptosis and inhibited invasion/migration of CCT-β overexpressed, highly metastatic lung adenocarcinoma.


Medicines ◽  
2020 ◽  
Vol 7 (4) ◽  
pp. 19 ◽  
Author(s):  
Leonardo Marques da Fonseca ◽  
Lucas Rodrigues Jacques da Silva ◽  
Jhenifer Santos dos Reis ◽  
Marcos André Rodrigues da Costa Santos ◽  
Victoria de Sousa Chaves ◽  
...  

Background: Piperine, an amide extracted from the Piper spices, exhibits strong anti-tumor properties. However, its effect on the epithelial–mesenchymal transition (EMT) process has never been investigated. Herein, we evaluate the toxic effect of piperine on lung adenocarcinoma (A549), breast adenocarcinoma (MDA-MB-231) and hepatocellular carcinoma (HepG2) cell lines, as well as its ability to inhibit EMT-related events induced by TGF-β1 treatment. Methods: The cell viability was investigated by MTT assay. Protein expression was evaluated by Western blot. Gene expression was monitored by real-time PCR. Zymography assay was employed to detect metalloproteinase (MMP) activity in conditioned media. Cell motility was assessed by the wound-healing and phagokinetic gold sol assays. Results: The results revealed that piperine was cytotoxic in concentrations over 100 µM, showing IC50 values for HepG2, MDA-MB-231 and A549 cell lines of 214, 238 and 198 µM, respectively. In order to investigate whether piperine would reverse the TGF-β1 induced-EMT, the A549 cell line was pretreated with sublethal concentrations of the natural amide followed by the addition of TGF-β1. Besides disrupting EMT-related events, piperine also inhibited both ERK 1/2 and SMAD 2 phosphorylation. Conclusions: These results suggest that piperine might be further used in therapeutic strategies for metastatic cancer and EMT-related disorders.


2011 ◽  
Vol 300 (4) ◽  
pp. F1017-F1025 ◽  
Author(s):  
Hongli Lin ◽  
Dapeng Wang ◽  
Taihua Wu ◽  
Cui Dong ◽  
Nan Shen ◽  
...  

Posttranslational modification of proteins could regulate their multiple biological functions. Transforming growth factor-β receptor I and II (ALK5 and TGF-βRII), which are glycoproteins, play important roles in the renal tubular epithelial-mesenchymal transition (EMT). In the present study, we examined the role of core fucosylation of TGF-βRII and ALK5, which is regulated by α-1,6 fucosyltransferase (Fut8), in the process of EMT of cultured human renal proximal tubular epithelial (HK-2) cells. The typical cell model of EMT induced by TGF-β1 was constructed to address the role of core fucosylation in EMT. Core fucosylation was found to be essential for both TGF-βRII and ALK5 to fulfill their functions, and blocking it with Fut8 small interfering RNA greatly reduced the phosphorylation of Smad2/3 protein, caused the inactivation of TGF-β/Smad2/3 signaling, and resulted in remission of EMT. More importantly, even with high levels of expressions of TGF-β1, TGF-βRII, and ALK5, blocking core fucosylation also could attenuate the EMT of HK-2 cells. Thus blocking core fucosylation of TGF-βRII and ALK5 may attenuate EMT independently of the expression of these proteins. This study may provide new insight into the role of glycosylation in renal interstitial fibrosis. Furthermore, core fucosylation may be a novel potential therapeutic target for treatment of renal tubular EMT.


2011 ◽  
Vol 29 (4_suppl) ◽  
pp. 414-414
Author(s):  
C. Grandclement ◽  
R. Bedel ◽  
B. Kantelip ◽  
E. Viel ◽  
J. Remy Martin ◽  
...  

414 Background: Initially characterized as neuronal receptors, Neuropilins (NRPs) were also found to be expressed in endothelial cells and subsequently were shown to play a role in the development of the vascular system. NRP family consists of two genes, neuropilin-1 (NRP1) and neuropilin-2 (NRP2).The multiple functions of NRPs were recently highlighted by the identification of NRP role in oncogenesis. In this study, we first confirmed the role of NRP2 in tumor progression. We also extended the understanding of NRP2 oncogenic functions by investigating the ability of NRP2 to orchestrate epithelial-mesenchymal transition (EMT) in colorectal cancer cells. Methods: We have generated human colon cancer cell lines transfected with NRP2 transgene or siRNA to investigate NRP2 involvement in EMT. First, the oncogenic functions of NRP2 were studied in vitro by MTT, soft agar, invasion assays and in vivo using xenografts experiments. Ability of NRP2 to orchestrate EMT was then investigated by flow cytometry, immunohistochemical (IHC) staining, western-blotting and quantitative real-time PCR. Results: IHC staining revealed that NRP2 is expressed in human colon and breast carcinomas while it is not expressed in healthy tissues. Then, we confirmed that NRP2 increases tumor proliferation, colony formation, invasion and xenograft formation. Moreover, NRP2-expressing cells displayed an immunohistochemical phenotype of EMT characterized by the loss of E-Cadherin and an increase of vimentin. Furthermore, NRP2 expression promotes transforming-growth factor-β1 (TGF- β1) signaling, leading to an increased phosphorylation of the Smad2/3 complex in colorectal cancer cell lines. Specific inhibition of NRP2 using siRNA or treatment with specific TGFβRI kinase inhibitors prevented this phosphorylation and the EMT, suggesting that NRP2 cooperates with TGFRI to promote EMT in colorectal carcinoma. Conclusions: Our findings have reinforced the essential role of NRP2 in cancer progression and demonstrated that NRP2 expression confers to tumor cell lines the hallmarks of EMT. Moreover, in the current work, we present evidence for the therapeutic value of NRP2 targeting. No significant financial relationships to disclose.


2009 ◽  
Vol 20 (22) ◽  
pp. 4751-4765 ◽  
Author(s):  
Ewa Kolosionek ◽  
Rajkumar Savai ◽  
Hossein Ardeschir Ghofrani ◽  
Norbert Weissmann ◽  
Andreas Guenther ◽  
...  

Epithelial–mesenchymal transition (EMT) has emerged as a critical event in the pathogenesis of organ fibrosis and cancer and is typically induced by the multifunctional cytokine transforming growth factor (TGF)-β1. The present study was undertaken to evaluate the potential role of phosphodiesterases (PDEs) in TGF-β1-induced EMT in the human alveolar epithelial type II cell line A549. Stimulation of A549 with TGF-β1 induced EMT by morphological alterations and by expression changes of the epithelial phenotype markers E-cadherin, cytokeratin-18, zona occludens-1, and the mesenchymal phenotype markers, collagen I, fibronectin, and α-smooth muscle actin. Interestingly, TGF-β1 stimulation caused twofold increase in total cAMP-PDE activity, contributed mostly by PDE4. Furthermore, mRNA and protein expression demonstrated up-regulation of PDE4A and PDE4D isoforms in TGF-β1-stimulated cells. Most importantly, treatment of TGF-β1 stimulated epithelial cells with the PDE4-selective inhibitor rolipram or PDE4 small interfering RNA potently inhibited EMT changes in a Smad-independent manner by decreasing reactive oxygen species, p38, and extracellular signal-regulated kinase phosphorylation. In contrast, the ectopic overexpression of PDE4A and/or PDE4D resulted in a significant loss of epithelial marker E-cadherin but did not result in changes of mesenchymal markers. In addition, Rho kinase signaling activated by TGF-β1 during EMT demonstrated to be a positive regulator of PDE4. Collectively, the findings presented herein suggest that TGF-β1 mediated up-regulation of PDE4 promotes EMT in alveolar epithelial cells. Thus, targeting PDE4 isoforms may be a novel approach to attenuate EMT-associated lung diseases such as pulmonary fibrosis and lung cancer.


Author(s):  
Hay-Ran Jang ◽  
Sol-Bi Shin ◽  
Chang-Hyeon Kim ◽  
Jae-Yeon Won ◽  
Rong Xu ◽  
...  

AbstractThe prerequisite function of vimentin for the epithelial–mesenchymal transition (EMT) is not clearly elucidated yet. Here, we show that vimentin phosphorylated by PLK1, triggers TGF-β-signaling, which consequently leads to metastasis and PD-L1 expression for immune suppression in lung adenocarcinoma. The clinical correlation between expression of both vimentin and PLK1, and overall survival rates of patients was significant in lung adenocarcinoma but not in squamous cell carcinoma. The phosphorylation of vimentin was accompanied by the activation of PLK1 during TGF-β-induced EMT in lung adenocarcinoma. Among the several phosphorylation sites determined by phospho-proteomic analysis and the site-specific mutagenesis, the phosphorylation at S339 displayed the most effective metastasis and tumourigenesis with the highest expression of PD-L1, compared with that of wild-type and other versions in both 3D cell culture and tail-vein injection metastasis models. Phosphomimetic vimentin at S339 interacted with p-Smad2 for its nuclear localization, leading to the expression of PD-L1. Clinical relevance revealed the inverse correlation between the survival rates of patients and the expressions of VIM, PLK1, and CD274 in primary and metastatic lung adenocarcinoma. Thus, PLK1-mediated phosphorylation of vimentin activates TGF-β signaling pathway, leading to the metastasis and immune escape through the expression of PD-L1, functioning as a shuttling protein in lung adenocarcinoma.


Sign in / Sign up

Export Citation Format

Share Document