scholarly journals Identification and Mitigation of Fraudulent Transaction using Deep Autoencoder

2021 ◽  
Vol 23 (11) ◽  
pp. 769-775
Author(s):  
Vipin Khattri ◽  
◽  
Sandeep Kumar Nayak ◽  

In an ancient era, physical resources used to apply for transacting messages, treaty content, monarchy schemes, and policies and associated national or territorial currency which consumes time duration in the heavy count with negligible security. But as time passes, technological advancement has tendered its valuable and qualitative inputs to make the conventional transaction more better at its highest level of the extent, and as a qualitative and progressive resultant, the world is breathing in the current era of the digital environment with high-security priority. The responsibility of researchers and concerned authorities is to protect the online digital transaction under the safe digital environment. Therefore continuous enhancement is required in the upgrade of the security of the transaction system to handle digital transaction fraud. This research study suggests an approach of deep autoencoder for identifying fraudulent payment card transactions. To assess the outcome and validity of the projected approach of deep autoencoder for identifying fraudulent payment card transactions, testing was executed with the help of two datasets. The first dataset is a real credit card fraud dataset that is public available in world and the second dataset are generated by collecting the data using payment card transaction including genuine transaction and fraudulent transactions. A comparative analysis performed which is based on a comparison with different method and used first dataset. The proposed integration approach performed exceptionally with the different method and accomplished the maximum performance with respect to area under receiver operating characteristic curve (AUC) (95.66%).

Author(s):  
Safwana Haque ◽  
George Loukas

Phishing is one of the most common cyber threats in the world today. It is a type of social engineering attack where the attacker lures unsuspecting victims into carrying out certain tasks mostly to steal personal and sensitive information. These stolen information are exploited to commit further crimes e.g. blackmails, data theft, financial theft, malware installation etc. This study was carried out to tackle this problem by designing an anti-phishing learning algorithm to detect phishing emails and also to study the accuracies of human phishing prediction to machine prediction. A graphical user interface was designed to emulate an email-client system that popped-up a warning on detecting a phishing mail successfully and collection of predictions made by expert and non-expert users on anti-phishing techniques. These predictions were compared to the predictions made by the machine learning algorithm to compare the efficiencies of all predictions considered in this research. The performance of the classifier used was measured with metrics such as confusion matrix, accuracy, receiver operating characteristic curve and area under graph


MicroRNA ◽  
2018 ◽  
Vol 8 (1) ◽  
pp. 86-92 ◽  
Author(s):  
Shili Jiang ◽  
Wei Jiang ◽  
Ying Xu ◽  
Xiaoning Wang ◽  
Yongping Mu ◽  
...  

Background and Objective: Accurately evaluating the severity of liver cirrhosis is essential for clinical decision making and disease management. This study aimed to evaluate the value of circulating levels of microRNA (miR)-26a and miR-21 as novel noninvasive biomarkers in detecting severity of cirrhosis in patients with chronic hepatitis B. </P><P> Methods: Thirty patients with clinically diagnosed chronic hepatitis B-related cirrhosis and 30 healthy individuals were selected. The serum levels of miR-26a and miR-21 were quantified by qRT-PCR. Receiver operating characteristic curve analysis was performed to evaluate the sensitivity and specificity of the miRNAs for detecting the severity of cirrhosis. Results: Serum miR-26a and miR-21 levels were found to be significantly downregulated in patients with severe cirrhosis scored at Child-Pugh class C in comparison to healthy controls (miR-26a p<0.01, and miR-21 p<0.001, respectively). The circulating miR-26a and miR-21 levels in patients were positively correlated with serum albumin concentration but negatively correlated with serum total bilirubin concentration and prothrombin time. Receiver operating characteristic curve analysis revealed that both serum miR-26a and miR-21 levels were associated with a high diagnostic accuracy for patients with cirrhosis scored at Child-Pugh class C (miR-26a Cut-off fold change at ≤0.4, Sensitivity: 84.62%, Specificity: 89.36%, P<0.0001; miR-21 Cut-off fold change at ≤0.6, Sensitivity: 84.62%, Specificity: 78.72%, P<0.0001). Our results indicate that the circulating levels of miR-26a and miR-21 are closely related to the extent of liver decompensation, and the decreased levels are capable of discriminating patients with cirrhosis at Child-Pugh class C from the whole cirrhosis cases.


2019 ◽  
Vol 30 (7-8) ◽  
pp. 221-228
Author(s):  
Shahab Hajibandeh ◽  
Shahin Hajibandeh ◽  
Nicholas Hobbs ◽  
Jigar Shah ◽  
Matthew Harris ◽  
...  

Aims To investigate whether an intraperitoneal contamination index (ICI) derived from combined preoperative levels of C-reactive protein, lactate, neutrophils, lymphocytes and albumin could predict the extent of intraperitoneal contamination in patients with acute abdominal pathology. Methods Patients aged over 18 who underwent emergency laparotomy for acute abdominal pathology between January 2014 and October 2018 were randomly divided into primary and validation cohorts. The proposed intraperitoneal contamination index was calculated for each patient in each cohort. Receiver operating characteristic curve analysis was performed to determine discrimination of the index and cut-off values of preoperative intraperitoneal contamination index that could predict the extent of intraperitoneal contamination. Results Overall, 468 patients were included in this study; 234 in the primary cohort and 234 in the validation cohort. The analyses identified intraperitoneal contamination index of 24.77 and 24.32 as cut-off values for purulent contamination in the primary cohort (area under the curve (AUC): 0.73, P < 0.0001; sensitivity: 84%, specificity: 60%) and validation cohort (AUC: 0.83, P < 0.0001; sensitivity: 91%, specificity: 69%), respectively. Receiver operating characteristic curve analysis also identified intraperitoneal contamination index of 33.70 and 33.41 as cut-off values for feculent contamination in the primary cohort (AUC: 0.78, P < 0.0001; sensitivity: 87%, specificity: 64%) and validation cohort (AUC: 0.79, P < 0.0001; sensitivity: 86%, specificity: 73%), respectively. Conclusions As a predictive measure which is derived purely from biomarkers, intraperitoneal contamination index may be accurate enough to predict the extent of intraperitoneal contamination in patients with acute abdominal pathology and to facilitate decision-making together with clinical and radiological findings.


Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 949
Author(s):  
Cecil J. Weale ◽  
Don M. Matshazi ◽  
Saarah F. G. Davids ◽  
Shanel Raghubeer ◽  
Rajiv T. Erasmus ◽  
...  

This cross-sectional study investigated the association of miR-1299, -126-3p and -30e-3p with and their diagnostic capability for dysglycaemia in 1273 (men, n = 345) South Africans, aged >20 years. Glycaemic status was assessed by oral glucose tolerance test (OGTT). Whole blood microRNA (miRNA) expressions were assessed using TaqMan-based reverse transcription quantitative-PCR (RT-qPCR). Receiver operating characteristic (ROC) curves assessed the ability of each miRNA to discriminate dysglycaemia, while multivariable logistic regression analyses linked expression with dysglycaemia. In all, 207 (16.2%) and 94 (7.4%) participants had prediabetes and type 2 diabetes mellitus (T2DM), respectively. All three miRNAs were significantly highly expressed in individuals with prediabetes compared to normotolerant patients, p < 0.001. miR-30e-3p and miR-126-3p were also significantly more expressed in T2DM versus normotolerant patients, p < 0.001. In multivariable logistic regressions, the three miRNAs were consistently and continuously associated with prediabetes, while only miR-126-3p was associated with T2DM. The ROC analysis indicated all three miRNAs had a significant overall predictive ability to diagnose prediabetes, diabetes and the combination of both (dysglycaemia), with the area under the receiver operating characteristic curve (AUC) being significantly higher for miR-126-3p in prediabetes. For prediabetes diagnosis, miR-126-3p (AUC = 0.760) outperformed HbA1c (AUC = 0.695), p = 0.042. These results suggest that miR-1299, -126-3p and -30e-3p are associated with prediabetes, and measuring miR-126-3p could potentially contribute to diabetes risk screening strategies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yali Feng ◽  
Jiaqi Zhang ◽  
Yi Zhou ◽  
Bo Chen ◽  
Ying Yin

AbstractThe aim of the present study was to examine the concurrent validity of 2 Chinese versions of the short version of the Montreal Cognitive Assessment (MoCA) in patients with stroke, i.e., MoCA 5-minute protocol and National Institute for Neurological Disorders and Stroke and Canadian Stroke Network (NINDS-CSN) 5-minute Protocol. A total of 54 patients and 27 healthy controls were enrolled in this study. In this study, the Neurobehavioural Cognitive Status Examination (NCSE) was used as an external criterion of cognitive impairment. We found that the 5-min protocol did not differ from the MoCA in differentiating patients with cognitive impairments from those without (area under the receiver operating characteristic curve, AUC, of 0.948 for the MoCA 5-min protocol v.s. 0.984 for MoCA, P = 0.097). These three assessments demonstrated equal performance in differentiating patients with stroke from controls. The Chinese version of the MoCA 5-min protocol can be used as a valid screening for patients with stroke.


2021 ◽  
pp. 1-12
Author(s):  
Xingchen Fan ◽  
Minmin Cao ◽  
Cheng Liu ◽  
Cheng Zhang ◽  
Chunyu Li ◽  
...  

BACKGROUND: MicroRNAs (miRNAs), with noticeable stability and unique expression pattern in plasma of patients with various diseases, are powerful non-invasive biomarkers for cancer detection including endometrial cancer (EC). OBJECTIVE: The objective of this study was to identify promising miRNA biomarkers in plasma to assist the clinical screening of EC. METHODS: A total of 93 EC and 79 normal control (NC) plasma samples were analyzed using Quantitative Real-time Polymerase Chain Reaction (qRT-PCR) in this four-stage experiment. The receiver operating characteristic curve (ROC) analysis was conducted to evaluate the diagnostic value. Additionally, the expression features of the identified miRNAs were further explored in tissues and plasma exosomes samples. RESULTS: The expression of miR-142-3p, miR-146a-5p, and miR-151a-5p was significantly overexpressed in the plasma of EC patients compared with NCs. Areas under the ROC curve of the 3-miRNA signature were 0.729, 0.751, and 0.789 for the training, testing, and external validation phases, respectively. The diagnostic performance of the identified signature proved to be stable in the three public datasets and superior to the other miRNA biomarkers in EC diagnosis. Moreover, the expression of miR-151a-5p was significantly elevated in EC plasma exosomes. CONCLUSIONS: A signature consisting of 3 plasma miRNAs was identified and showed potential for the non-invasive diagnosis of EC.


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3546
Author(s):  
Katarzyna Sylwia Dobruch-Sobczak ◽  
Hanna Piotrzkowska-Wróblewska ◽  
Piotr Karwat ◽  
Ziemowit Klimonda ◽  
Ewa Markiewicz-Grodzicka ◽  
...  

The aim of the study was to improve monitoring the treatment response in breast cancer patients undergoing neoadjuvant chemotherapy (NAC). The IRB approved this prospective study. Ultrasound examinations were performed prior to treatment and 7 days after four consecutive NAC cycles. Residual malignant cell (RMC) measurement at surgery was the standard of reference. Alteration in B-mode ultrasound (tumor echogenicity and volume) and the Kullback-Leibler divergence (kld), as a quantitative measure of amplitude difference, were used. Correlations of these parameters with RMC were assessed and Receiver Operating Characteristic curve (ROC) analysis was performed. Thirty-nine patients (mean age 57 y.) with 50 tumors were included. There was a significant correlation between RMC and changes in quantitative parameters (KLD) after the second, third and fourth course of NAC, and alteration in echogenicity after the third and fourth course. Multivariate analysis of the echogenicity and KLD after the third NAC course revealed a sensitivity of 91%, specificity of 92%, PPV = 77%, NPV = 97%, accuracy = 91%, and AUC of 0.92 for non-responding tumors (RMC ≥ 70%). In conclusion, monitoring the echogenicity and KLD parameters made it possible to accurately predict the treatment response from the second course of NAC.


Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1127
Author(s):  
Ji Hyung Nam ◽  
Dong Jun Oh ◽  
Sumin Lee ◽  
Hyun Joo Song ◽  
Yun Jeong Lim

Capsule endoscopy (CE) quality control requires an objective scoring system to evaluate the preparation of the small bowel (SB). We propose a deep learning algorithm to calculate SB cleansing scores and verify the algorithm’s performance. A 5-point scoring system based on clarity of mucosal visualization was used to develop the deep learning algorithm (400,000 frames; 280,000 for training and 120,000 for testing). External validation was performed using additional CE cases (n = 50), and average cleansing scores (1.0 to 5.0) calculated using the algorithm were compared to clinical grades (A to C) assigned by clinicians. Test results obtained using 120,000 frames exhibited 93% accuracy. The separate CE case exhibited substantial agreement between the deep learning algorithm scores and clinicians’ assessments (Cohen’s kappa: 0.672). In the external validation, the cleansing score decreased with worsening clinical grade (scores of 3.9, 3.2, and 2.5 for grades A, B, and C, respectively, p < 0.001). Receiver operating characteristic curve analysis revealed that a cleansing score cut-off of 2.95 indicated clinically adequate preparation. This algorithm provides an objective and automated cleansing score for evaluating SB preparation for CE. The results of this study will serve as clinical evidence supporting the practical use of deep learning algorithms for evaluating SB preparation quality.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chowdhury Rafeed Rahman ◽  
Ruhul Amin ◽  
Swakkhar Shatabda ◽  
Md. Sadrul Islam Toaha

AbstractDNA N6-methylation (6mA) in Adenine nucleotide is a post replication modification responsible for many biological functions. Automated and accurate computational methods can help to identify 6mA sites in long genomes saving significant time and money. Our study develops a convolutional neural network (CNN) based tool i6mA-CNN capable of identifying 6mA sites in the rice genome. Our model coordinates among multiple types of features such as PseAAC (Pseudo Amino Acid Composition) inspired customized feature vector, multiple one hot representations and dinucleotide physicochemical properties. It achieves auROC (area under Receiver Operating Characteristic curve) score of 0.98 with an overall accuracy of 93.97% using fivefold cross validation on benchmark dataset. Finally, we evaluate our model on three other plant genome 6mA site identification test datasets. Results suggest that our proposed tool is able to generalize its ability of 6mA site identification on plant genomes irrespective of plant species. An algorithm for potential motif extraction and a feature importance analysis procedure are two by products of this research. Web tool for this research can be found at: https://cutt.ly/dgp3QTR.


Sign in / Sign up

Export Citation Format

Share Document