scholarly journals Evaluation of probiotic bacteria Leucosnostoc mensenteroides against White Gut Disease in shrimp aquaculture

2021 ◽  
Vol 23 (11) ◽  
pp. 891-905
Author(s):  
A. Sathyapriya ◽  

With increasing demand for environment friendly aquaculture, use of beneficial bacteria to displace pathogens by competitive processes is being used in the animal industry as a better remedy and is now gaining acceptance for pathogen control in aquaculture. With this concern, the present study was designed for isolation of suitable probiotic bacteria from natural sources, application in an effective dose in the rearing environment is expected to control the blowout of White Gut Disease in aquaculture systems. The interaction of pathogenic Vibrio anguillarum and the inner surface of the digestive tract of P. monodon, with a specific focus on their in-situ morphology, aggregation and attachment characteristics presented with pathogenic bacterial species and under the control of probiotic bacteria were analyzed through. The percentage of granular cells of treated group was higher than the control. Histological studies revealed that the treated group has optimistic effect which helps in the reduction of tissue damage and decrease the mortality rate than the infected shrimps. Leuconostoc sp., can survive in the saline condition rather than other Lactobacillus sp., and its tolerance of acidic environment of the shrimp intestine and their adherence level at the intestine will progressively replace the V. anguillarum from the infected shrimps and commendably control the White Gut Disease.

2021 ◽  
Vol 9 (3) ◽  
pp. 509
Author(s):  
Amanda Carroll-Portillo ◽  
Henry C. Lin

Conventional phage therapy using bacteriophages (phages) for specific targeting of pathogenic bacteria is not always useful as a therapeutic for gastrointestinal (GI) dysfunction. Complex dysbiotic GI disorders such as small intestinal bowel overgrowth (SIBO), ulcerative colitis (UC), or Crohn’s disease (CD) are even more difficult to treat as these conditions have shifts in multiple populations of bacteria within the microbiome. Such community-level structural changes in the gut microbiota may require an alternative to conventional phage therapy such as fecal virome transfer or a phage cocktail capable of targeting multiple bacterial species. Additionally, manipulation of the GI microenvironment may enhance beneficial bacteria–phage interactions during treatment. Mucin, produced along the entire length of the GI tract to protect the underlying mucosa, is a prominent contributor to the GI microenvironment and may facilitate bacteria–phage interactions in multiple ways, potentially serving as an adjunct during phage therapy. In this review, we will describe what is known about the role of mucin within the GI tract and how its facilitation of bacteria–phage interactions should be considered in any effort directed at optimizing effectiveness of a phage therapy for gastrointestinal dysbiosis.


2001 ◽  
Vol 67 (1) ◽  
pp. 142-147 ◽  
Author(s):  
Henrik Stender ◽  
Adam J. Broomer ◽  
Kenneth Oliveira ◽  
Heather Perry-O'Keefe ◽  
Jens J. Hyldig-Nielsen ◽  
...  

ABSTRACT A new chemiluminescent in situ hybridization (CISH) method provides simultaneous detection, identification, and enumeration of culturableEscherichia coli cells in 100 ml of municipal water within one working day. Following filtration and 5 h of growth on tryptic soy agar at 35°C, individual microcolonies of E. coliwere detected directly on a 47-mm-diameter membrane filter using soybean peroxidase-labeled peptide nucleic acid (PNA) probes targeting a species-specific sequence in E. coli 16S rRNA. Within each microcolony, hybridized, peroxidase-labeled PNA probe and chemiluminescent substrate generated light which was subsequently captured on film. Thus, each spot of light represented one microcolony of E. coli. Following probe selection based on 16S ribosomal DNA (rDNA) sequence alignments and sample matrix interference, the sensitivity and specificity of the probe Eco16S07C were determined by dot hybridization to RNA of eight bacterial species. Only the rRNA of E. coli and Pseudomonas aeruginosa were detected by Eco16S07C with the latter mismatch hybridization being eliminated by a PNA blocker probe targetingP. aeruginosa 16S rRNA. The sensitivity and specificity for the detection of E. coli by PNA CISH were then determined using 8 E. coli strains and 17 other bacterial species, including closely related species. No bacterial strains other thanE. coli and Shigella spp. were detected, which is in accordance with 16S rDNA sequence information. Furthermore, the enumeration of microcolonies of E. coli represented by spots of light correlated 92 to 95% with visible colonies following overnight incubation. PNA CISH employs traditional membrane filtration and culturing techniques while providing the added sensitivity and specificity of PNA probes in order to yield faster and more definitive results.


2016 ◽  
Vol 705 ◽  
pp. 163-167 ◽  
Author(s):  
Ellaine M. Datu ◽  
Mary Donnabelle L. Balela

Commercially available conductive inks are typically made up of precious metal nanoparticles, such as gold (Au) and silver (Ag). Thus, cheaper metals like copper (Cu) are currently being explored as alternative material. Though Cu has a comparable conductivity to that of Ag, they tend to oxidize easily when exposed to air and water, which could limit their application. In this work, oxidation-stable Cu nanoparticles with mean diameter as small as 57 nm were prepared by simple electroless deposition in water. Food-grade gelatin was used as stabilizer, which makes the process more economical and environment-friendly. In situ monitoring of mixed potential was carried out during synthesis to understand the kinetics of the reaction. The mixed potential of the solution shifted negatively as the amount of gelatin was increased. This suggests faster reduction rate.


Nanoscale ◽  
2021 ◽  
Author(s):  
Hang Zhang ◽  
Xuemin Wang ◽  
Zhengzheng Li ◽  
Cui Zhang ◽  
Shuangxi Liu

Transition-metal selenides are capturing eminence as promising electrode materials for energy storage applications owing to their low electronegativity and environment-friendly compared with metal sulfides/oxides. Herein, a CuCoSe@NC nanocomposite with copper-cobalt...


2018 ◽  
Vol 10 (464) ◽  
pp. eaal0033 ◽  
Author(s):  
Ahsan R. Akram ◽  
Sunay V. Chankeshwara ◽  
Emma Scholefield ◽  
Tashfeen Aslam ◽  
Neil McDonald ◽  
...  

Respiratory infections in mechanically ventilated patients caused by Gram-negative bacteria are a major cause of morbidity. Rapid and unequivocal determination of the presence, localization, and abundance of bacteria is critical for positive resolution of the infections and could be used for patient stratification and for monitoring treatment efficacy. Here, we developed an in situ approach to visualize Gram-negative bacterial species and cellular infiltrates in distal human lungs in real time. We used optical endomicroscopy to visualize a water-soluble optical imaging probe based on the antimicrobial peptide polymyxin conjugated to an environmentally sensitive fluorophore. The probe was chemically stable and nontoxic and, after in-human intrapulmonary microdosing, enabled the specific detection of Gram-negative bacteria in distal human airways and alveoli within minutes. The results suggest that pulmonary molecular imaging using a topically administered fluorescent probe targeting bacterial lipid A is safe and practical, enabling rapid in situ identification of Gram-negative bacteria in humans.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Xiaochen Wang ◽  
Guiqiu Zhao ◽  
Jing Lin ◽  
Nan Jiang ◽  
Qian Wang ◽  
...  

Aims. The aim of this study was to assess the efficacy and safety of timolol in the treatment of myopic regression after laser in situ keratomileusis (LASIK).Methods. We searched MEDLINE, CENTRAL, EMBASE, China National Knowledge Infrastructure (CNKI), and Chinese Biological Medicine (CBM) from the inception to July 2015 for relevant randomized controlled trials that examined timolol therapy for myopic regression. The methodological quality of the studies included was assessed using the Revman 5.3 software.Results. We included six clinical trials involving 483 eyes in this review, including 246 eyes in treated group and 237 eyes in controlled group. We observed statistically significant improvements on the postoperative SE in the 3 months. However, the change of CCT was not statistically different between the control group and the experimental group. There were fewer cases of IOP, UDVA, and CDVA in treated group having significant difference from the controlled group.Conclusions. Topical timolol could be an effective treatment for reduction of myopic regression especially the spherical errors after myopic LASIK. Further RCTs with larger sample sizes for these trials are warranted to determine the efficacy and limitation for myopic regression after LASIK.


2014 ◽  
Vol 8 (1) ◽  
pp. 47-50
Author(s):  
SM Apoorva ◽  
A Suchetha ◽  
DB Mundinamane ◽  
DP Bhopale ◽  
A Bharwani ◽  
...  

ABSTRACT Microflora can be found in both caries-free and periodontitis-free people and caries-affected and periodontitis-affected people, and many clinical studies reveal that the portion of certain bacterial species such as Streptococcus mutans or Porphyromonas gingivalis, respectively, is increased in patients with caries or periodontitis. Therefore, it seems that the competition that results between beneficial bacteria and virulent bacteria leads to either a healthy or sick status of human beings. Competition between members of the dental microflora and there role in pocket recolonization is very complex and many antagonistic characteristics can be observed from competition for initial attachment on tooth surfaces or for later attachment to pioneer bacteria, competition from bacteriocins or hydrogen peroxide secreted and from facilitating the growth of some species which inhibit other species. To date only some of the details of these mechanisms are known. The present review will provide an overview on the prevalence of beneficial bacteria and the major mechanisms of oral bacterial interactions. Due to the large number of oral bacterial species, only the best characterized species are included in this review.


2020 ◽  
Author(s):  
Audrey Reuter ◽  
Cécile Hilpert ◽  
Annick Dedieu-Berne ◽  
Sophie Lematre ◽  
Erwan Gueguen ◽  
...  

AbstractThe global emergence of drug-resistant bacteria leads to the loss of efficacy of our antibiotics arsenal and severely limits the success of currently available treatments. Here, we developed an innovative strategy based on Targeted-Antibacterial-Plasmids (TAPs) that use bacterial conjugation to deliver CRISPR/Cas systems exerting a strain-specific antibacterial activity. TAPs are highly versatile as they can be directed against any specific genomic or plasmid DNA using the custom algorithm (CSTB) that identifies appropriate targeting spacer sequences. We demonstrate the ability of TAPs to induce strain-selective killing by introducing lethal double strand breaks (DSBs) into the targeted genomes. TAPs directed against a plasmid-born carbapenem resistance gene efficiently resensitise the strain to the drug. This work represents an essential step towards the development of an alternative to antibiotic treatments, which could be used for in situ microbiota modification to eradicate targeted resistant and/or pathogenic bacteria without affecting other non-targeted bacterial species.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Serge Lévesque ◽  
Thomas Graham ◽  
Dorin Bejan ◽  
Jamie Lawson ◽  
Ping Zhang ◽  
...  

Abstract The capture and re-use of greenhouse fertigation water is an efficient use of fertilizer and limited water resources, although the practice is not without risk. Plant pathogens and chemical contaminants can build up over successive capture and re-use cycles; if not properly managed they can lead to reduced productivity or crop loss. There are numerous established and emerging water treatment technologies available to treat fertigation water. Electrochemical processes are emerging as effective means for controlling pathogens via in situ regenerative hypochlorination; a process that is demonstrated here to achieve pathogen control in fertigation solutions without leading to the accumulation of potentially phytotoxic free chlorine residuals associated with other chlorination processes. An electrochemical flow cell (EFC) outfitted with ruthenium dioxide (RuO2) dimensionally stable anodes (DSA) was characterized and evaluated for free chlorine production and Rhizoctonia solani inactivation in both irrigation and fertigation solutions. Pathogen inactivation was achieved at low current densities and short residence or cell contact times. Effluent free chlorine concentrations were significantly lower than commonly reported phytotoxic threshold values (approximately 2.5 mg/L) when fertilizer (containing ammonium) was present in the test solution; an effect attributable to reactions associated with breakpoint chlorination, including chloramine formation, as well as the presence of other oxidizable compounds in the fertilizer. Chloride concentrations were stable under the test conditions suggesting that the EFC was operating as a regenerative in situ electrochemical hypochlorination system. No significant changes to macronutrient concentrations were found following passage through the EFC.


Sign in / Sign up

Export Citation Format

Share Document