scholarly journals Anti-inflammatory, anti-oxidant and wound-healing properties of selected South Africa medicinal plants

2017 ◽  
Author(s):  
◽  
Nonkululeko Betty Mzindle

South Africa has a wide range of medicinal plants that are used traditionally by black Zulu South Africans for the treatment of a range of illnesses, including inflammatory ailments; disease conditions caused by oxidative stress and wound healing. It has been indicated that bioactive compounds isolated from plants contribute to their anti-inflammatory, antioxidant and wound healing properties; hence, herbal remedies have been widely used traditionally in many countries in the management and treatment of wounds. Inflammation is the main condition that relates to a variety of diseases affecting most of the world’s population. It is the body’s immune response to infection and injury and is induced by the release of pro-inflammatory mediator’s —prostaglandins and leukotrienes—following wound occurrence. Wounds result in disruption of living tissue caused by oxidative stress. Anti-inflammatory agents, antioxidants, and antimicrobials play an important role in the wound healing process and they prevent aggravated wound conditions.Controlling inflammation during wound repair is important to minimize any additional complications that may result; hence, chemical agents such as non-steroidal anti-inflammatory drugs (NSAIDS), synthetic antioxidantsand steroids are frequently used. These drugs block the enzymes that are responsible for prostaglandin synthesis in inflammation, react with free radicals thereby interfering with oxidation process as a result affect one or more phases of wound healing. The use of these drugs, however, has been limited as they can cause detrimental side effects when used over long periods of time.There is, consequently, a need to find alternative natural therapeutic drugs. Studies on medicinal plants confirmed that herbal drugs exhibit fewer side effects in comparison with chemical agents and are more cost-effective.Thus the aim of this study was to investigate South African medicinal plants, for anti-inflammatory, antioxidant and wound healing properties. Dissolved extracts of thirty-eight medicinal plants were evaluated for theiranti-inflammatory activity using the 5-lipoxygenase assay as well as free radical scavenging activity using the 1; 1-diphenyl-2-picrylhydrazyl (DPPH) assay.Their safety was evaluated using brine shrimp lethality assay. Proliferation and viability of fibroblast cells was determined by the3-(4, 5-dimethylthiazolyl)-2, 5-diphenyltetrazolium bromide(MTT) assay furthermore a scratch wound assay was used to study the properties of wound healing in vitro and to confirm the anti-inflammatory activities of the dissolved extracts. Migration rate was evaluated quantitatively by an image analyzer. Methanol was chosen for extraction because it completely dissolves extracts. Anova was used for statistical analysis. Almost all aqueous extracts were found to be effective in inhibiting lipoxygenase enzyme when compared to nordihydroguaiaretic acid (NDGA). Aqueous extracts exhibited remarkably high percentage inhibition of lipoxygenase with most above 100% when compared to methanolic extracts. Amaranthus dubius and Portulaca oleracea were found to have good biological activities in the inhibition of 5-lipoxygenase enzymes when compared to the other plants. However, Galinsoga parviflora and Syzygium cordatumwere least effective in inhibiting enzyme activity with percentages as low as -2% and 34% respectively. Percentage inhibitions for methanolic extracts were lower than that of aqueous extracts. Amaranthus spinosus had the highest percentage inhibition among all the methanolic extracts andGalinsoga parviflorahad the lowest. The methanolic plant extracts were found to be more effective in scavenging DPPH free radicals than the corresponding aqueous extracts. All the methanolic extracts exhibited free radical scavenging ability in the range of 60%–104%. Asystasia gangetica, Ficus sur, Heteropyxis natalensis, Hibiscus sabdariffa, Pelargonium sp. showed notably higher scavenging abilities, ranging from 101%–104% compared to Rutin. Methanolic extracts of Heteropyxis natalensis and Hibiscus sabdariffa exhibited scavenging ability even at the lowest concentration of 10μg/ml. Furthermore, aqueous extracts displayed remarkably lower activities than methanolic extracts with thirty-one extracts having a scavenging capacity ranging from 22%—59%. None of the extracts were found to be detrimental to brine shrimp. Almost all the extracts were shown to stimulate the growth of fibroblast cells except the methanolic extract of Solanum nodiflorum, which was shown to be killing the cells at high concentrations with a percentage viability of 46%.As the concentration decreased, however, the viability of cells with this extract increased to 143%. An increase in the number of fibroblast cells was observed in the scratched area of the treated cells and a significant migration rate was also noted with some of the extracts. Aqueous extracts of Sonchus oleraceus (86%), Justicia flava (85%) and Dichrostachys cinerea (85%) and methanolic extracts of Senna occidentalis and Hibiscus sabdariffa were found to have the highest migration rate compared to untreated cells that served as a control. No cell migration was observed with methanolic extract of Solanum nodiflorum.Instead, the extract was found to be toxic to the cells. Some of the plants evaluated in this study have been studied for either anti-inflammatory, antioxidantand wound healing properties in vivo, however, no work has been conducted to demonstrate a correlation between anti-inflammatory, antioxidant and wound healing properties of plant species in vitro. The current study was, therefore, conducted to review medicinal herbs considered as anti-inflammatory, antioxidants and wound healing agents as well as collecting evidence for their effectiveness and pharmacological mechanisms in modern science. In the plant species investigated Amaranthus dubius, Asystasia gangetica, Bidens pilosa, Buddleja saligna, Carpobrotus dimidiatus, Chenopodium album, Dichrostachys cinerea, Emex australis, Ficus sur, Guilleminea densa, Hibiscus sabdariffa, Physalis viscose, Syzygium cordatum, Taraxacum officinale and Tulbaghia violacea demonstrated good anti-inflammatory and wound healing properties.In conclusion the results from this study demonstrated promising anti-inflammatory and antioxidantactivities as well as wound healing properties,furthermoreit was aslo shown that the plant extracts were not toxic to the cells hencethis suggested that the plants investigated, can be used as substitutes or to formulate wound healing agents that are safe to use in primary healthcare.

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Bibianne Waiganjo ◽  
Gervason Moriasi ◽  
Jared Onyancha ◽  
Nelson Elias ◽  
Francis Muregi

Malaria is a deadly disease caused by a protozoan parasite whose mode of transmission is through a female Anopheles mosquito. It affects persons of all ages; however, pregnant mothers, young children, and the elderly suffer the most due to their dwindled immune state. The currently prescribed antimalarial drugs have been associated with adverse side effects ranging from intolerance to toxicity. Furthermore, the costs associated with conventional approach of managing malaria are arguably high especially for persons living in low-income countries, hence the need for alternative and complementary approaches. Medicinal plants offer a viable alternative because of their few associated side effects, are arguably cheaper, and are easily accessible. Based on the fact that studies involving antimalarial medicinal plants as potential sources of efficacious and cost-effective pharmacotherapies are far between, this research was designed to investigate antiplasmodial and cytotoxic activities of organic and aqueous extracts of selected plants used by Embu traditional medicine practitioners to treat malaria. The studied plants included Erythrina abyssinica (stem bark), Schkuhria pinnata (whole plant), Sterculia africana (stem bark), Terminalia brownii (leaves), Zanthoxylum chalybeum (leaves), Leonotis mollissima (leaves), Carissa edulis (leaves), Tithonia diversifolia (leaves and flowers), and Senna didymobotrya (leaves and pods). In vitro antiplasmodial activity studies of organic and water extracts were carried out against chloroquine-sensitive (D6) and chloroquine-resistance (W2) strains of Plasmodium falciparum. In vivo antiplasmodial studies were done by Peter’s four-day suppression test to test for their in vivo antimalarial activity against P. berghei. Finally, cytotoxic effects and safety of the studied plant extracts were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) rapid calorimetric assay technique. The water and methanolic extracts of T. brownii and S. africana and dichloromethane extracts of E. abyssinica, S. pinnata, and T. diversifolia leaves revealed high in vitro antiplasmodial activities (IC50≤10 μg/ml). Further, moderate in vivo antimalarial activities were observed for water and methanolic extracts of L. mollissima and S. africana and for dichloromethane extracts of E. abyssinica and T. diversifolia leaves. In this study, aqueous extracts of T. brownii and S. africana demonstrated high antiplasmodial activity and high selectivity indices values (SI≥10) and were found to be safe. It was concluded that T. brownii and S. africana aqueous extracts were potent antiplasmodial agents. Further focused studies geared towards isolation of active constituents and determination of in vivo toxicities to ascertain their safety are warranted.


2020 ◽  
Vol 10 (5) ◽  
pp. 1845 ◽  
Author(s):  
Alexandra M. Afonso ◽  
Joana Gonçalves ◽  
Ângelo Luís ◽  
Eugenia Gallardo ◽  
Ana Paula Duarte

Honey and propolis are natural substances produced by Apis mellifera that contain flavonoids, phenolic acids, and several other phytochemicals. The aim of this study was to phytochemically characterize three different types of honey and propolis, both separately and mixed, and to evaluate their wound-healing activity. Total phenolic compounds and flavonoids were determined using the Folin–Ciocalteu’s and aluminum chloride colorimetric methods, respectively. The antioxidant activity was evaluated by both the DPPH free radical scavenging assay and β-carotene bleaching test, and the anti-inflammatory activity was determined by a protein denaturation method. To evaluate the wound-healing activity of the samples, NHDF cells were subjected to a wound scratch assay. The obtained results showed that dark-brown honey presents a higher concentration of phenolic compounds and flavonoids, as well as higher antioxidant and anti-inflammatory activities. Propolis samples had the highest concentrations in bioactive compounds. Examining the microscopic images, it was possible to verify that the samples promote cell migration, demonstrating the wound-healing potential of honey and propolis.


2020 ◽  
Vol 4 (1) ◽  
pp. e100064
Author(s):  
Dereje Nigussie ◽  
Belete Adefris Legesse ◽  
Gail Davey ◽  
Abebaw Fekadu ◽  
Eyasu Makonnen

ObjectivesMedicinal plants are used globally as alternative medicines in the management of a range of disease conditions and are widely accepted across differing societies. Ethiopia hosts a large number of plant species (>7000 higher plant species), of which around 12% are thought to be endemic, making it a rich source of plant extracts potentially useful for human health. The aim of this review is to evaluate Ethiopian medicinal plants for their anti-inflammatory, wound healing, antifungal or antibacterial activities.Methods and analysisThe guidance of the Preferred Reporting Items for Systematic Review and Meta-analysis Protocols (PRISMA-P) statement will be used. This review will consider all controlled studies of anti-inflammatory and wound healing properties (both in vivo and in vitro) and in vitro anti-infective properties of medicinal plants found in Ethiopia. Data sources will be EMBASE, PubMed/Medline, Scopus and Google Scholar. Guidance documents on good in vitro methods and checklists for reporting in vitro studies will be used for quality assessment of in vitro studies. The risk of bias tool for animal intervention studies (the SYRCLE RoB tool) will be used to assess the validity of studies. The main outcomes will be percent inhibition of inflammation, time of epithelisation and tissue tensile strength in wounds and microbial growth inhibition.Ethics and disseminationThe findings of this systematic review will be disseminated by publishing in a peer-reviewed journal and via conference presentations. Ethical clearance was obtained from the Brighton and Sussex Medical School, Research Governance & Ethics Committee (RGEC) and Addis Ababa University, College of Health Science, Institutional Review Board.PROSPERO registration numberThis systematic literature review has been registered with PROSPERO (registration number CRD42019127471).


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Carene M. N. Picot ◽  
A. Hussein Subratty ◽  
M. Fawzi Mahomoodally

Five traditionally used antidiabetic native medicinal plants of Mauritius, namely,Stillingia lineata(SL),Faujasiopsis flexuosa(FF),Erythroxylum laurifolium(EL),Elaeodendron orientale(EO), andAntidesma madagascariensis(AM), were studied for possibleα-amylase andα-glucosidase inhibitory property, glucose entrapment, and amylolysis kineticsin vitro. Only methanolic extracts of EL, EO, and AM (7472.92±5.99,1745.58±31.66, and2222.96±13.69 μg/mL, resp.) were found to significantly (P<0.05) inhibitα-amylase and were comparable to acarbose. EL, EO, AM, and SL extracts (5000 μg/mL) were found to significantly (P<0.05) inhibitα-glucosidase (between87.41±3.31and96.87±1.37% inhibition). Enzyme kinetic studies showed an uncompetitive and mixed type of inhibition. Extracts showed significant (P<0.05) glucose entrapment capacities (8 to 29% glucose diffusion retardation index (GDRI)), with SL being more active (29% GDRI) and showing concentration-dependent activity (29, 26, 21, 14, and 5%, resp.). Amylolysis kinetic studies showed that methanolic extracts were more potent inhibitors ofα-amylase compared to aqueous extracts and possessed glucose entrapment properties. Our findings tend to provide justification for the hypoglycaemic action of these medicinal plants which has opened novel avenues for the development of new phytopharmaceuticals geared towards diabetes management.


2021 ◽  
Vol 22 (3) ◽  
Author(s):  
Deepak Pant ◽  
BIVA ARYAL ◽  
DAMA PUN ◽  
SUSHILA SHARMA ◽  
GIRI PRASAD JOSHI

Abstract. Pant DR, Aryal B, Pun D, Sharma S, Joshi GP. 2021. Inhibition of a-amylase and a-glucosidase activities in vitro by extracts of selected medicinal plants. Biodiversitas 22: 1187-1193. Several medicinal plants are being used traditionally in the treatment/management of Diabetes Mellitus (DM). The present work focuses on experimental verification of antidiabetic potential of different medicinal plants that have been reported to be used traditionally to manage DM. Aqueous and methanolic extracts of 12 species of plants were studied for their inhibitory effect on the activities of a-amylase and a-glucosidase, two key enzymes of carbohydrate metabolism. The extracts of all the species showed very high degree (nearly 90% or above) of inhibition of α-amylase irrespective of the extraction solvent. The aqueous extracts of Asterella wallichiana, however, showed only 63.60% inhibition of a-amylase. Except for Asterella wallichiana, the percentage inhibition of a-amylase in aqueous and methanolic solution in all the species tested were almost similar. The percentage inhibition of a-glucosidase was lower than that of a-amylase for all the species in both types of extraction medium. The highest percentage inhibition of a-glucosidase (81.13±1.36 %) was found in methanolic extracts of Rhuschinensis. The inhibition of a-glucosidase was much higher in methanolic extracts than in aqueous extracts for all the species tested. High degree of inhibition of a-amylase activity in vitro by the extracts of all the species tested provides scientific basis for using these plants in the management/treatment of diabetes in traditional medicine.


Author(s):  
Hoda Keshmiri Neghab ◽  
Mohammad Hasan Soheilifar ◽  
Gholamreza Esmaeeli Djavid

Abstract. Wound healing consists of a series of highly orderly overlapping processes characterized by hemostasis, inflammation, proliferation, and remodeling. Prolongation or interruption in each phase can lead to delayed wound healing or a non-healing chronic wound. Vitamin A is a crucial nutrient that is most beneficial for the health of the skin. The present study was undertaken to determine the effect of vitamin A on regeneration, angiogenesis, and inflammation characteristics in an in vitro model system during wound healing. For this purpose, mouse skin normal fibroblast (L929), human umbilical vein endothelial cell (HUVEC), and monocyte/macrophage-like cell line (RAW 264.7) were considered to evaluate proliferation, angiogenesis, and anti-inflammatory responses, respectively. Vitamin A (0.1–5 μM) increased cellular proliferation of L929 and HUVEC (p < 0.05). Similarly, it stimulated angiogenesis by promoting endothelial cell migration up to approximately 4 fold and interestingly tube formation up to 8.5 fold (p < 0.01). Furthermore, vitamin A treatment was shown to decrease the level of nitric oxide production in a dose-dependent effect (p < 0.05), exhibiting the anti-inflammatory property of vitamin A in accelerating wound healing. These results may reveal the therapeutic potential of vitamin A in diabetic wound healing by stimulating regeneration, angiogenesis, and anti-inflammation responses.


Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
F Epifano ◽  
S Genovese ◽  
L Zhao ◽  
V Dang La ◽  
D Grenier

Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 768
Author(s):  
Maddalena Sguizzato ◽  
Francesca Ferrara ◽  
Supandeep Singh Hallan ◽  
Anna Baldisserotto ◽  
Markus Drechsler ◽  
...  

Mangiferin is a natural glucosyl xanthone with antioxidant and anti-inflammatory activity, making it suitable for protection against cutaneous diseases. In this study ethosomes and transethosomes were designed as topical delivery systems for mangiferin. A preformulation study was conducted using different surfactants in association with phosphatidylcholine. Vesicle dimensional distribution was monitored by photon correlation spectroscopy, while antioxidant capacity and cytotoxicity were respectively assessed by free radical scavenging analysis and MTT on HaCaT keratinocytes. Selected nanosystems were further investigated by cryogenic transmission electron microscopy, while mangiferin entrapment capacity was evaluated by ultracentrifugation and HPLC. The diffusion kinetics of mangiferin from ethosomes and transethosomes evaluated by Franz cell was faster in the case of transethosomes. The suitability of mangiferin-containing nanovesicles in the treatment of skin disorders related to pollutants was investigated, evaluating, in vitro, the antioxidant and anti-inflammatory effect of ethosomes and transethosomes on human keratinocytes exposed to cigarette smoke as an oxidative and inflammatory challenger. The ability to induce an antioxidant response (HO-1) and anti-inflammatory status (IL-6 and NF-kB) was determined by RT-PCR and immunofluorescence. The data demonstrated the effectiveness of mangiferin loaded in nanosystems to protect cells from damage. Finally, to gain insight into the keratinocytes’ uptake of ethosome and transethosome, transmission electron microscopy analyses were conducted, showing that both nanosystems were able to pass intact within the cells.


Author(s):  
Abhishek Chatterjee ◽  
Dileep Singh Baghel ◽  
Bimlesh Kumar ◽  
Saurabh Singh ◽  
Narendra Kumar Pandey ◽  
...  

Objective: The aims of the present investigation were to develop the herbal and/or herbomineral formulations of Hinguleswara rasa and to compare their anti-inflammatory and antioxidant activities, in vitro, with that of standard drug samples.Methods: This study was an interventional investigation in three samples: In the first sample, Hinguleswara rasa (HR1) was prepared as per methodology described in Rasatarangini using Shuddha Hingula (10 g), Shuddha Vatsanabha (10 g), and Pippali (10 g). In the second and third sample, respectively, Hinguleswara rasa was prepared by replacing Shuddha Hingula with Kajjali where Kajjali made from Hingulotha parada and Sodhita parada constitutes two varieties of Hinguleswara rasa, i.e. HR2 and HR3. In vitro antioxidant activity was studied using 2,2-diphenyl-1-picrylhydrazyl, and the absorbance was recorded at 517 nm. For evaluating the in vitro anti-inflammatory studies, the inhibition of albumin denaturation technique was performed.Results: The results showed that the formulation of Hinguleswara rasa has shown dose-dependent activity which was observed in 100 μg concentration. HR1, HR2, and HR3 showed 36.11, 17.22, and 16.11% radical scavenging activity.Conclusion: It could be concluded that the changes made in the formulations did not affect the in vitro anti-inflammatory and antioxidant effects of the herbomineral formulations.


Sign in / Sign up

Export Citation Format

Share Document