scholarly journals Effect of extraction conditions on the concentration of phenolic compounds in Mexican oregano (Lippia graveolens Kunth) residues

2021 ◽  
Vol 27 (3) ◽  
pp. 367-381
Author(s):  
M. Estela Frías-Zepeda ◽  
◽  
Martha Rosales-Castro ◽  

Introduction: Mexican oregano (Lippia graveolens Kunth) leaves are marketed for use in food and for essential oil extraction. Phenolic compounds with antioxidant properties can be obtained from the residues (leaves without oil and stems) under appropriate extraction conditions. Objective: To evaluate the effect of extraction solvent and mass/volume ratio on phenolic compounds concentration and their antioxidant capacity in oregano residues. Materials and methods: Residual leaf (without oil) and stems of oregano were used to obtain extracts with 30, 50 and 80 % aqueous ethanol (ET30, ET50, ET80, respectively) and solvent mass/ volume ratios (1:10, 1:20 and 1:30). Yield in solids, total phenols concentration and flavonoids, and antioxidant capacity were evaluated in the extracts. Similarity analysis between extracts was performed by HPLC-DAD and the main phenols were identified by UPLC-MS. Results and discussion: Extract yields, phenol concentrations and flavonoids and antioxidant capacity for leaves were higher than for stems. The maximum concentration of phenols was obtained with ET80 and 1:30 ratio, which indicates better dissolution in ethanol than in water. The extracts ET50 and ET80 had chromatographic similarity of phenols in both residues; naringenin, taxifolin, eriodictyol, caffeic acid and luteolin were the major compounds. Conclusion: Ethanol-water concentrations and mass/solvent ratios are feasible for obtaining flavonoid and non-flavonoid phenolic compounds with antioxidant capacity from oil-free leaves and stems of oregano.

2011 ◽  
Vol 6 (2) ◽  
pp. 199-204 ◽  
Author(s):  
Annamaria Leccese ◽  
Raffaella Viti ◽  
Susanna Bartolini

AbstractTwo solvent extraction procedures were used to investigate the extraction efficiency in terms of total antioxidant capacity and total phenols in apricot fruit. Samples were either sequentially extracted with aqueous ethanol (ethanol/water 80% v/v) and tetrahydrofuran or directly extracted with tetrahydrofuran. Each extract was analyzed for total antioxidant capacity by the Trolox Equivalent Antioxidant Capacity (TEAC) assay and total phenols by the Folin-Ciocalteu assay. The results showed that using sequential solvent extraction, the majority (85%) of the total antioxidant capacity and total phenols was due to hydrophilic compounds. In tetrahydrofuran direct extractions, the total antioxidant capacity and total phenols were higher than values obtained with aqueous ethanol and the sum of results obtained from sequential extracts for either total antioxidant capacity or total phenols was similar to the tetrahydrofuran-extract antioxidant values. A linear correlation between total antioxidant capacity and total phenols was found and was independent of the solvent extraction method. In conclusion, the choice of solvent is related to the antioxidant potential of fruit and depends on the food hydrophilic/lipophilic composition.


Foods ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1206 ◽  
Author(s):  
Hafiz A. R. Suleria ◽  
Colin J. Barrow ◽  
Frank R. Dunshea

Fruit peels have a diverse range of phytochemicals including carotenoids, vitamins, dietary fibres, and phenolic compounds, some with remarkable antioxidant properties. Nevertheless, the comprehensive screening and characterization of the complex array of phenolic compounds in different fruit peels is limited. This study aimed to determine the polyphenol content and their antioxidant potential in twenty different fruit peel samples in an ethanolic extraction, including their comprehensive characterization and quantification using the LC-MS/MS and HPLC. The obtained results showed that the mango peel exhibited the highest phenolic content for TPC (27.51 ± 0.63 mg GAE/g) and TFC (1.75 ± 0.08 mg QE/g), while the TTC (9.01 ± 0.20 mg CE/g) was slightly higher in the avocado peel than mango peel (8.99 ± 0.13 mg CE/g). In terms of antioxidant potential, the grapefruit peel had the highest radical scavenging capacities for the DPPH (9.17 ± 0.19 mg AAE/g), ABTS (10.79 ± 0.56 mg AAE/g), ferric reducing capacity in FRAP (9.22 ± 0.25 mg AA/g), and total antioxidant capacity, TAC (8.77 ± 0.34 mg AAE/g) compared to other fruit peel samples. The application of LC-ESI-QTOF-MS/MS tentatively identified and characterized a total of 176 phenolics, including phenolic acids (49), flavonoids (86), lignans (11), stilbene (5) and other polyphenols (25) in all twenty peel samples. From HPLC-PDA quantification, the mango peel sample showed significantly higher phenolic content, particularly for phenolic acids (gallic acid, 14.5 ± 0.4 mg/g) and flavonoids (quercetin, 11.9 ± 0.4 mg/g), as compared to other fruit peel samples. These results highlight the importance of fruit peels as a potential source of polyphenols. This study provides supportive information for the utilization of different phenolic rich fruit peels as ingredients in food, feed, and nutraceutical products.


Beverages ◽  
2018 ◽  
Vol 5 (1) ◽  
pp. 2 ◽  
Author(s):  
Vassilios Raikos ◽  
He Ni ◽  
Helen Hayes ◽  
Viren Ranawana

Aqueous extracts (20% w/w) of dried berry fruits and skins were used as sources of phenolic compounds to fortify yogurt beverages. The total phenol and anthocyanin content of the reformulated yogurts were determined, and the antioxidant properties were compared to plain yogurt (C) during storage at 4 °C for a total period of four weeks. Yogurt beverages fortified with salal berry (SB) extracts contained higher amounts of phenolic compounds (>69.9 μg GAE/mL) and anthocyanins (>19.12 mg C3G/L) compared to drinks supplemented with blackcurrant pomace (BC) extract (>50.13 μg GAE/mL and >10.80 mg C3G/L respectively). Storage affected the stability of anthocyanins, whereas total phenol content remained unaffected. Yogurts with SB displayed the highest antioxidant capacity followed by samples with BC, which is attributed to the radical scavenging effect of the bioactive compounds present with antioxidant properties. The antioxidant capacity of the yogurt beverages fortified with fruit extracts was maintained during cold storage. Findings of this study indicate that SB and BC pomace can be used as functional ingredients to increase the antioxidant potential of yogurt beverages.


2016 ◽  
Vol 44 (1) ◽  
pp. 175-182 ◽  
Author(s):  
Branka T. STOJANOVIC ◽  
Snezana S. MITIC ◽  
Gordana S. STOJANOVIC ◽  
Milan N. MITIC ◽  
Danijela A. KOSTIC ◽  
...  

Peach (Prunus persica L.) is a fruit of high nutritional and economic value. Carbohydrates, dietary fibers, minerals and organic acids are among the major constituents of peach fruit, which contribute to the nutritional quality of both fresh fruits and juice. Polyphenolic compounds found in peach may play an important role in physiological functions related to human health. Different polyphenolics may have varied biological activities including antioxidant activity. In this study antioxidant characteristics between peel and pulp of different peach cultivars (‘Radmilovčanka’, ‘June Gold’, ‘Blake’, ‘Hale’, ‘Vesna’, ‘Adria’) and one of nectarine (‘Fantasia’) were investigated. The peel and pulp extracts showed a huge amount of total phenolics (TP), total flavonoids (TF), total hydroxycinnamates (TH) and total flavonols (TFL), ranging from 42.7-211.4, 11.1-128.5 mg GAE/100 g fresh weight (f.w.) (TP), 21.9 -94.9, 5.0-58.9 mg CE/100 g f.w. (TF), 28.4-389.2, 8.5-165.8 mg kg-1 f.w. (TH) and 17.3-54 mg kg-1 f.w. (TFL). High contents of phenolic compounds were significantly correlated with high antioxidant capacities. Peach pulp and peel differ significantly in their phenolic profiles: the pulp contains mainly chlorogenic, neochlorogenic and p-coumaric acids, whereas the peel possesses chlorogenic, neochlorogenic and p-coumaric acids together with several flavonol glycosides in huge amounts. Our results indicate that cultivar and extraction solvent play important roles in phenolic compositions and antioxidant properties of peach and nectarine extracts, which was shown using statistical analysis (ANOVA). There are high correlations between extracted phenolic compounds and peach and nectarine cultivars, and used solvent and part of the fruit (peel and pulp).


Author(s):  
Zoran S. Ilić ◽  
Lidija Milenković ◽  
Ljubomir Šunić ◽  
Saša Barać ◽  
Dragan Cvetković ◽  
...  

The objectives of this study were to investigate the effects of coloured shade-nets (pearl, blue, or red all with a 50% shade index) compared to non-shaded plants on quality traits on the Discoa and ICE 40102 (green-leaf) and Eglantine (red-leaf) lettuce cultivars. Total chlorophyll content depended on the shading and lettuce genotype. The chlorophyll a and b contents were higher in shaded than unshaded plants. The cv. Eglantine had the highest total chlorophylls (637.03 μg∙g-1 F.M.) content. The highest carotenoid content was in leaves of cv. Discoa under pearl nets (208.89 μg∙g-1 F.M). The highest total phenols content (76.70±1.9 mg∙g-1 GAE D.M.) was in cv. Discoa under red shade; the highest flavonoids content was for cvs. Discoa (42.97) and Eglantine (42.91 mg∙g-1 RU D.M.) under blue shade. The blue and pearl shade nets resulted in slightly higher flavonoid contents in lettuce leaves compared to unshaded plants. The cv. Eglantine, under blue shade had the highest antioxidant capacity (EC50 - 0.197 mg∙mL-1). Red lettuce cv. Eglantine could be recommended for production due to its higher antioxidant properties. Generally blue shade can be used to retain antioxidant capacity.


2020 ◽  
Vol 10 (4-s) ◽  
pp. 108-111
Author(s):  
Karima Loucif ◽  
Hassiba Benabdallah ◽  
Fatima Benchikh ◽  
Soulaf Mehlous ◽  
Chahrazed Kaoudoune ◽  
...  

Reactive oxygen (ROS) and nitrogen species (RNS) are produced in all cells and play important roles in physiology. The loss of the redox balance, either by an increase of oxidant molecules ROS and RNS or by decreased antioxidant system activities cause a state of oxidative stress. Several studies are going on worldwide directed towards finding natural antioxidants of plant origin. Plants containing phenolic compounds have been reported to possess strong antioxidant activity. The objective of this study is to evaluate total polyphenols and flavonoids contents (TPC and TFC) as well as examine the in vitro antioxidative properties from aqueous extract of Ammoides atlantica (AqE). TPC was estimated utilizing Folin-Ciocalteu's reagent. TFC was evaluated utilizing the aluminum chloride method. The antioxidant properties were evaluated using metal chelating and cupric ion reducing antioxidant capacity (CUPRAC) assays. Indeed, results showed that the AqE is rich in polyphenols (141.74±0.44 µg gallic acid equivalents/ mg of dry weight), and flavonoids (61.87±6.7 µg quercetin equivalent/ mg dry weight). These phytochemical compounds possess significant antioxidant activities. The results showed that AqE exhibited a good Metal chelating activity with an IC50 of 36.57±4.73 µg/ mL. CUPRAC assay showed that AqE extract exhibited high cupric ion reducing antioxidant capacity with an A0.5 of 8.58±0.13 µg/mL. These findings provide evidence that AqE of Ammoides atlantica is a potential source of antioxidant which have many benefits towards human health. Keywords: Ammoides atlantica, aqueous extract, phenolic compounds, metal chelating and cupric ion reducing antioxidant capacity.


2021 ◽  
Vol 02 ◽  
Author(s):  
Md. Saifullah ◽  
Rebecca McCullum ◽  
Quan Van Vuong

Background: Lemon myrtle (Backhousia citriodora), is native to Australia and has a significant value as an aromatic herb and folk medicine. Recently it has shown potential applications in food, pharmaceutical, and cosmetic industries. Objective: This study was designed to identify the most suitable safe solvent for the extraction of phenolic compounds and antioxidant properties from lemon myrtle leaves, and then apply response surface methodology (RSM) to develop the optimal conditions (time, temperature, and sonication power) for extraction of phenolic compounds and antioxidant properties from lemon myrtle using ultrasonic-assisted extraction (UAE). Methods: Five different solvents viz water, acetone, ethanol, acetone: water (50:50), and ethanol: water (50:50) were tested for extraction efficiency of phenolic compounds and antioxidant properties from dried lemon myrtle leaves. A three-level three-factor Box–Behnken design was employed to elucidate the effect of sonication time, extraction temperature, and sonication power on the yields of total phenolics, antioxidant capacities, and major individual compounds (gallic acid and hesperetin). Results: The results showed that solvents have a significant impact on the extraction efficiency of bioactive compounds and antioxidant properties from lemon myrtle, and 50% acetone is the best solvent. Mathematical models were reliable for prediction of optimal extraction conditions and the optimal conditions for extraction of phenolic compounds and antioxidant capacity, as well as gallic acid and hesperetin are 50 min, 60 °C and sonication power of 250 W. Conclusion: These optimal conditions and 50% acetone in water (as solvent) are recommended to extract phenolic compounds and antioxidant capacity from lemon myrtle leaves for the application as a functional food ingredient.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4001
Author(s):  
Xiaoxi Liao ◽  
Phillip Greenspan ◽  
Ronald B. Pegg

Two common extraction solvent systems, namely acidified aqueous methanol and acidified aqueous acetone, were used to extract blackberry phenolics, and the antioxidant properties of the recovered extracts were compared. The crude extracts were fractionated into low- and high-molecular-weight phenolics by Sephadex LH-20 column chromatography. The hydrophilic-oxygen radical absorbance capacity (H-ORACFL), ferric reducing antioxidant power (FRAP), and the cellular antioxidant activity (CAA) assays were employed as indices to assess antioxidant capacity of the extracts and their respective fractions. The methanolic solvent system displayed a greater efficiency at extracting anthocyanin and flavonol constituents from the blackberries, while the acetonic solvent system was better at extracting flavan-3-ols and tannins. Anthocyanins were the dominant phenolic class found in the blackberries with 138.7 ± 9.8 mg C3G eq./100 g f.w. when using methanol as the extractant and 114.6 ± 3.4 mg C3G eq./100 g f.w. when using acetone. In terms of overall antioxidant capacity of blackberry phenolics, the acetonic solvent system was superior. Though present only as a small percentage of the total phenolics in each crude extract, the flavan-3-ols (42.37 ± 2.44 and 51.44 ± 3.15 mg/100 g f.w. in MLF and ALF, respectively) and ellagitannins (5.15 ± 0.78 and 9.31 ± 0.63 mg/100 g f.w. in MHF and AHF, respectively) appear to account for the differences in the observed antioxidant activity between the two solvent systems.


2020 ◽  
Author(s):  
◽  
Bodine Mazibuko

The increased incidences, mortality rate and economic impact of noncommunicable diseases (e.g. high blood pressure and diabetes) associated with oxidative stress, have led to the higher demand for antioxidant supplements for their prevention. The use of naturally occurring antioxidants is becoming a more attractive option due to the health risks associated with synthetic antioxidants. Phenolic compounds from plants have been shown to have antioxidant properties with the potential to be used as substitutes to synthetic antioxidants. However, monomeric phenolic compounds have several short comings such as low bioavailability, poor solubility, and low antioxidant capacity while some have pro-oxidant properties at high concentrations. Hence there has been increasing research focused on the biotransformation of these phenolic antioxidants through enzymatic oligomerisation to higher molecular weight compounds with improved antioxidant capacity and stability. Of the investigated enzymes, laccases have shown the most promise owing to their green catalytic properties. Their reaction mechanism involves the use of molecular oxygen as a co- substrate in oxidising phenolic compounds to corresponding radicals, with water as the only by- product. This study focused on the synthesis of antioxidants with enhanced antioxidant capacity using a laccase from Trametes pubescens as biocatalyst. To establish the potential of the phenolic compounds for use as substrates for the coupling reactions, a preliminary screening process was done. Guaiacol, caffeic acid, vanillic acid, eugenol, catechol, gallic acid, ferulic acid and quercetin hydrate were identified as suitable substrates for the laccase enzyme. However, only products from eugenol, coumaric acid and quercetin could be isolated, hence coupling reactions were carried out using these substrates in monophasic systems. Reaction products were monitored using thin layer chromatography (TLC) and high-performance liquid chromatography (HPLC). Purification was carried out using preparative TLC and characterisation using liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR). The antioxidant capacities of reaction products were determined using ABTS (2,2’-Azinobis 3- ethylbenzthiazoline-6-sulfonic acid), DPPH (2,2-diphenyl-1-picrylhydrazyl) and FRAP (ferric- reducing antioxidant power) assays. Quercetin hydrate oxidation produced one product which was purified and characterised. The product had an Rf of 0.68, tR 13.567 and m/z 601 in negative mode, indicating that it was a dimeric form of quercetin. Oxidation of ρ-coumaric acid resulted in the production of two products designated P1 (Rf 0.47) and P2 (Rf 0.42). Further characterisation was done on product P2 since product P1 could not be successfully purified. P2 had a retention time of 11.295 and m/z 325, indicating that it was a dimer of ρ-coumaric. The ρ-coumaric dimer had an enhanced antioxidant capacity, approximately 2-fold, 3-fold and 6-fold higher compared to the substrate, as demonstrated by the ABTS, DPPH and FRAP assays, respectively. A symmetrical 5-5 eugenol dimer (m/z 325, [M] =326), bis-eugenol, was produced from eugenol oxidation. Maximum product formation (50% yield) was obtained in a monophasic system with 40% v/v dioxane as co-solvent after incubation for 18 h. The bis- eugenol dimer had an improved antioxidant capacity of up to three and four times that of eugenol as demonstrated by the ABTS and DPPH assays, respectively. In conclusion, two dimers with high antioxidant capacity were successfully produced, purified and characterised. The study has demonstrated the potential of the T. pubescens laccase as a catalyst for the synthesis of phenolic compounds with enhanced antioxidant capacity.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
C. Jiménez Martínez ◽  
A. Cardador Martínez ◽  
A. L. Martinez Ayala ◽  
M. Muzquiz ◽  
M. Martin Pedrosa ◽  
...  

The changes in SDS-PAGE proteins patterns, oligosaccharides and phenolic compounds ofL. campestrisseeds, were evaluated during nine germination days. SDS-PAGE pattern showed 12 bands in the original protein seeds, while in the samples after 1–9 germination days, the proteins located in the range of 28–49 and 49–80 kDa indicated an important reduction, and there was an increase in bands about 27 kDa. On the other hand, oligosaccharides showed more than 50% of decrease in its total concentration after 4 germination days; nevertheless after the fifth day, the oligosaccharides concentration increases and rises more than 30% of the original concentration. Phenolic compounds increased their concentration since the first germination day reaching until 450% more than the original seed level. The obtained results are related with liberation or increase of phenolic compounds with antioxidant properties, allowing us to suggest that the germination would be used to produce legume foods for human consumption with better nutraceutical properties.


Sign in / Sign up

Export Citation Format

Share Document