scholarly journals Laccase-mediated biotransformation of phenolic compounds for the synthesis of new antioxidants

2020 ◽  
Author(s):  
◽  
Bodine Mazibuko

The increased incidences, mortality rate and economic impact of noncommunicable diseases (e.g. high blood pressure and diabetes) associated with oxidative stress, have led to the higher demand for antioxidant supplements for their prevention. The use of naturally occurring antioxidants is becoming a more attractive option due to the health risks associated with synthetic antioxidants. Phenolic compounds from plants have been shown to have antioxidant properties with the potential to be used as substitutes to synthetic antioxidants. However, monomeric phenolic compounds have several short comings such as low bioavailability, poor solubility, and low antioxidant capacity while some have pro-oxidant properties at high concentrations. Hence there has been increasing research focused on the biotransformation of these phenolic antioxidants through enzymatic oligomerisation to higher molecular weight compounds with improved antioxidant capacity and stability. Of the investigated enzymes, laccases have shown the most promise owing to their green catalytic properties. Their reaction mechanism involves the use of molecular oxygen as a co- substrate in oxidising phenolic compounds to corresponding radicals, with water as the only by- product. This study focused on the synthesis of antioxidants with enhanced antioxidant capacity using a laccase from Trametes pubescens as biocatalyst. To establish the potential of the phenolic compounds for use as substrates for the coupling reactions, a preliminary screening process was done. Guaiacol, caffeic acid, vanillic acid, eugenol, catechol, gallic acid, ferulic acid and quercetin hydrate were identified as suitable substrates for the laccase enzyme. However, only products from eugenol, coumaric acid and quercetin could be isolated, hence coupling reactions were carried out using these substrates in monophasic systems. Reaction products were monitored using thin layer chromatography (TLC) and high-performance liquid chromatography (HPLC). Purification was carried out using preparative TLC and characterisation using liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR). The antioxidant capacities of reaction products were determined using ABTS (2,2’-Azinobis 3- ethylbenzthiazoline-6-sulfonic acid), DPPH (2,2-diphenyl-1-picrylhydrazyl) and FRAP (ferric- reducing antioxidant power) assays. Quercetin hydrate oxidation produced one product which was purified and characterised. The product had an Rf of 0.68, tR 13.567 and m/z 601 in negative mode, indicating that it was a dimeric form of quercetin. Oxidation of ρ-coumaric acid resulted in the production of two products designated P1 (Rf 0.47) and P2 (Rf 0.42). Further characterisation was done on product P2 since product P1 could not be successfully purified. P2 had a retention time of 11.295 and m/z 325, indicating that it was a dimer of ρ-coumaric. The ρ-coumaric dimer had an enhanced antioxidant capacity, approximately 2-fold, 3-fold and 6-fold higher compared to the substrate, as demonstrated by the ABTS, DPPH and FRAP assays, respectively. A symmetrical 5-5 eugenol dimer (m/z 325, [M] =326), bis-eugenol, was produced from eugenol oxidation. Maximum product formation (50% yield) was obtained in a monophasic system with 40% v/v dioxane as co-solvent after incubation for 18 h. The bis- eugenol dimer had an improved antioxidant capacity of up to three and four times that of eugenol as demonstrated by the ABTS and DPPH assays, respectively. In conclusion, two dimers with high antioxidant capacity were successfully produced, purified and characterised. The study has demonstrated the potential of the T. pubescens laccase as a catalyst for the synthesis of phenolic compounds with enhanced antioxidant capacity.

Nutrients ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1723 ◽  
Author(s):  
Jiménez-Moreno ◽  
Cimminelli ◽  
Volpe ◽  
Ansó ◽  
Esparza ◽  
...  

Artichoke waste represents a huge amount of discarded material. This study presents the by-products (bracts, exterior leaves, and stalks) of the “Blanca de Tudela” artichoke variety as a potential source of phenolic compounds with promising antioxidant properties. Artichoke residues were subjected to different extraction processes, and the antioxidant capacity and phenolic composition of the extracts were analyzed by spectrophotometric methods and high performance liquid chromatography (HPLC) analyses, respectively. The most abundant polyphenols in artichoke waste were chlorogenic acid, luteolin-7-O-rutinoside, and luteolin-7-O-glucoside. Minor quantities of cynarin, luteolin, apigenin-7-O-glucoside, apigenin-7-O-rutinoside, and naringenin-7-O-glucoside were also found. The antioxidant activity of the obtained extracts determined by ABTS [2, 2’-azinobis (3-ethylbenzothiazoline-6-sulphonic acid)], DPPH (2,2-diphenyl-1-pycrilhydracyl), and FRAP (Ferric Ion Reducing Antioxidant Power) was highly correlated with the total concentration of phenolic compounds. Chlorogenic acid, luteolin-7-O-glucoside, and luteolin-7-O-rutinoside, the most abundant compounds in 60% methanol extracts, are the components most responsible for the antioxidant activity of the artichoke waste extracts. The extract with the best antioxidant capacity was selected to assay its antioxidant potential on a model intestinal barrier. This action of the hydroxycinnamic acids on intestinal cells (Caco-2) was confirmed. In summary, artichoke waste may be considered a very interesting ingredient for food functionalization and for therapeutic purposes.


2013 ◽  
Vol 31 (No. 5) ◽  
pp. 509-513 ◽  
Author(s):  
A. Orphanides ◽  
V. Goulas ◽  
V. Gekas

The changes in total phenolics, hydroxycinammic acid derivatives, and antioxidant properties of spearmint after five drying treatments (convection oven drying, freeze-drying, microwave drying, and air drying with the sun exposure and without the sun exposure) were investigated. Phenolic composition of dried spearmint was analysed by spectrophotometric assays, while DPPH radical scavenging activity and Ferric reducing/Antioxidant power (FRAP) assay was used to measure the antioxidant properties. The results showed that freeze drying produced dried spearmint that had the highest total phenolics (34.6 ± 1.9 mg/g) content and the most potent antioxidant capacity (126.2 ± 0.4 mg/g for FRAP and 88.1 ± 5.9 mg/g for DPPH, respectively). On the other hand, spearmint that was dried by convection oven and microwave drying presented the lowest amount of phenolic compounds (12.0 ± 0.5 mg/g) and antioxidant potency (49.3 ± 0.7 mg/g for FRAP and 26.9 ± 1.6 mg/g for DPPH, respectively). This might be attributed to the fact that heat-sensitive phenolics were degraded or biotransformed at high temperatures. The loss of phenolic compounds and antioxidant activity reached up to 60% compared to freeze drying.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 234 ◽  
Author(s):  
Yili Hong ◽  
Zening Wang ◽  
Colin J. Barrow ◽  
Frank R. Dunshea ◽  
Hafiz A. R. Suleria

Stone fruits, including peach (Prunus persica L.), nectarine (Prunus nucipersica L.), plum (Prunus domestica L.) and apricot (Prunus armeniaca L.) are common commercial fruits in the market. However, a huge amount of stone fruits waste is produced throughout the food supply chain during picking, handling, processing, packaging, storage, transportation, retailing and final consumption. These stone fruits waste contain high phenolic content which are the main contributors to the antioxidant potential and associated health benefits. The antioxidant results showed that plum waste contained higher concentrations of total phenolic content (TPC) (0.94 ± 0.07 mg gallic acid equivalents (GAE)/g) and total flavonoid content (TFC) (0.34 ± 0.01 mg quercetin equivalents (QE)/g), while apricot waste contained a higher concentration of total tannin content (TTC) (0.19 ± 0.03 mg catechin equivalents (CE)/g) and DPPH activity (1.47 ± 0.12 mg ascorbic acid equivalents (AAE)/g). However, nectarine waste had higher antioxidant capacity in ferric reducing-antioxidant power (FRAP) (0.98 ± 0.02 mg AAE/g) and total antioxidant capacity (TAC) (0.91 ± 0.09 mg AAE/g) assays, while peach waste showed higher antioxidant capacity in 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assay (0.43 ± 0.09 mg AAE/g) as compared to other stone fruits waste. Qualitative and quantitative phenolic analysis of Australian grown stone fruits waste were conducted by liquid chromatography coupled with electrospray-ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS/MS) and HPLC-photodiode array detection (PDA). The LC-ESI-QTOF-MS/MS result indicates that 59 phenolic compounds were tentatively characterized in peach (33 compounds), nectarine (28), plum (38) and apricot (23). The HPLC-PDA indicated that p-hydroxybenzoic acid (18.64 ± 1.30 mg/g) was detected to be the most dominant phenolic acid and quercetin (19.68 ± 1.38 mg/g) was the most significant flavonoid in stone fruits waste. Hence, it could be concluded that stone fruit waste contains various phenolic compounds and have antioxidant potential. The results could support the applications of these stone fruit wastes in other food, feed, nutraceutical and pharmaceutical industries.


Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 554
Author(s):  
Marta C. Coelho ◽  
Tânia B. Ribeiro ◽  
Carla Oliveira ◽  
Patricia Batista ◽  
Pedro Castro ◽  
...  

In times of pandemic and when sustainability is in vogue, the use of byproducts, such as fiber-rich tomato byproducts, can be an asset. There are still no studies on the impact of extraction methodologies and the gastrointestinal tract action on bioactive properties. Thus, this study used a solid fraction obtained after the conventional method (SFCONV) and a solid fraction after the ohmic method (SFOH) to analyze the effect of the gastrointestinal tract on bioactive compounds (BC) and bioactivities. Results showed that the SFOH presents higher total fiber than SFCONV samples, 62.47 ± 1.24–59.06 ± 0.67 g/100 g DW, respectively. Both flours present high amounts of resistant protein, representing between 11 and 16% of insoluble dietary fiber. Furthermore, concerning the total and bound phenolic compounds, the related antioxidant activity measured by 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) radical cation decolorization assay presented significantly higher values for SFCONV than SFOH samples (p < 0.05). The main phenolic compounds identified in the two flours were gallic acid, rutin, and p-coumaric acid, and carotenoids were lycopene, phytofluene, and lutein, all known as health promoters. Despite the higher initial values of SFCONV polyphenols and carotenoids, these BCs’ OH flours were more bioaccessible and presented more antioxidant capacity than SFCONV flours, throughout the simulated gastrointestinal tract. These results confirm the potential of ohmic heating to modify the bioaccessibility of tomato BC, enhancing their concentrations and improving their antioxidant capacity.


2013 ◽  
Vol 110 (4) ◽  
pp. 632-639 ◽  
Author(s):  
Patricia López-Andrés ◽  
Giuseppe Luciano ◽  
Valentina Vasta ◽  
Trevor M. Gibson ◽  
Luisa Biondi ◽  
...  

A total of sixteen lambs were divided into two groups and fed two different diets. Of these, eight lambs were fed a control diet (C) and eight lambs were fed the C diet supplemented with quebracho tannins (C+T). The objective of the present study was to assess whether dietary quebracho tannins can improve the antioxidant capacity of lamb liver and plasma and if such improvement is due to a direct transfer of phenolic compounds or their metabolites, to the animal tissues. Feed, liver and plasma samples were purified by solid-phase extraction (SPE) and analysed by liquid chromatography–MS for phenolic compounds. Profisitinidin compounds were identified in the C+T diet. However, no phenolic compounds were found in lamb tissues. The liver and the plasma from lambs fed the C+T diet displayed a greater antioxidant capacity than tissues from lambs fed the C diet, but only when samples were not purified with SPE. Profisetinidin tannins from quebracho seem not to be degraded or absorbed in the gastrointestinal tract. However, they induced antioxidant effects in animal tissues.


2018 ◽  
Vol 46 (1) ◽  
pp. 128-133 ◽  
Author(s):  
Ferit CELIK ◽  
Mehmet Ramazan BOZHUYUK ◽  
Sezai ERCISLI ◽  
Muttalip GUNDOGDU

In present study, fruit weight, fruit firmness, external fruit color, soluble solid content, pH, titratable acidity, vitamin C, total phenolics, total anthocyanins, and antioxidant capacity of eight wild bilberry grown in Coruh valley in northeastern Turkey were determined. The blueberry cv. ‘Bluecrop’ is also included study to make comparison with bilberry genotypes. Antioxidant activity of bilberry and blueberry fruits were comparatively assessed by FRAP (Ferric reducing antioxidant power) assay. Significantly higher content of phenolics and anthocyanins was found in bilberry fruits than in blueberry fruits. However blueberry cv. ‘Bluecrop’ exhibited higher fruit weight and vitamin C content than bilberry fruits. Total phenolic and total anthocyanin content was 327 mg gallic acid equivalent and 142 mg of cyanidin-3-glucoside equivalent in 100 g fresh fruit in cv. ‘Bluecrop’ while it was between 492-563 mg gallic acid equaivalent and 307-342 mg of cyanidin-3-glucoside equivalent in 100 g fresh fruits of  bilberry accessions. Moreover, wild accessions approximately had 2-3 folds higher antioxidant capacity than cv. ‘Bluecrop’. Results suggest the possibility of improving the bioactive and antioxidant properties of bilberry cultivars based food products by using wild ones in cross breeding. It was also concluded that genotypes significantly affect their bioactive content and consequently the possibility of using wild bilberry fruits as a potential source of natural antioxidants in food industry.


2009 ◽  
Vol 27 (Special Issue 1) ◽  
pp. S213-S216 ◽  
Author(s):  
D. Komes ◽  
D. Horžić ◽  
A. Belščak ◽  
K. Kovačević Ganič ◽  
A. Baljak

Caffeine-containing products have been consumed for hundreds of years for their pleasant flavor and stimulating effects. In recent years, caffeine received increasing attention in food and pharmaceutical industries, due to its pharmacological properties which comprise stimulation of the central nervous system, peripheral vasoconstriction, relaxation of the smooth muscle and myocardial stimulation. The aim of this study was to determine the content of caffeine in five types of tea (white, yellow, green, oolong, black) and two types of maté tea (green maté and roasted maté tea). The content of caffeine was determined by using four different methods: extraction with chloroform, micromethod, method with lead-acetate and high performance liquid chromatography method (HPLC-PDA). The antioxidant capacity of teas as well as of the extracted (“raw”) caffeine was determined by using two methods: reactions with 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) radical (ABTS assay) and Ferric reducing antioxidant power (FRAP assay). The content of caffeine has been associated with plant origin and growth conditions, as well as processing conditions. By applying all four methods, the highest content of caffeine was determined in white tea, whereas maté and roasted maté tea were characterised with the lowest content of caffeine. Spectrophotometric micro-method has proven to be the best alternative to the HPLC method. The highest antioxidant capacity was determined in yellow tea, while the lowest was determined in roasted maté tea. In comparison to the antioxidant capacity of teas, the antioxidant capacity of extracted (“raw”) caffeine is almost negligible, and does not contribute to the overall antioxidant properties of tea.


Foods ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1206 ◽  
Author(s):  
Hafiz A. R. Suleria ◽  
Colin J. Barrow ◽  
Frank R. Dunshea

Fruit peels have a diverse range of phytochemicals including carotenoids, vitamins, dietary fibres, and phenolic compounds, some with remarkable antioxidant properties. Nevertheless, the comprehensive screening and characterization of the complex array of phenolic compounds in different fruit peels is limited. This study aimed to determine the polyphenol content and their antioxidant potential in twenty different fruit peel samples in an ethanolic extraction, including their comprehensive characterization and quantification using the LC-MS/MS and HPLC. The obtained results showed that the mango peel exhibited the highest phenolic content for TPC (27.51 ± 0.63 mg GAE/g) and TFC (1.75 ± 0.08 mg QE/g), while the TTC (9.01 ± 0.20 mg CE/g) was slightly higher in the avocado peel than mango peel (8.99 ± 0.13 mg CE/g). In terms of antioxidant potential, the grapefruit peel had the highest radical scavenging capacities for the DPPH (9.17 ± 0.19 mg AAE/g), ABTS (10.79 ± 0.56 mg AAE/g), ferric reducing capacity in FRAP (9.22 ± 0.25 mg AA/g), and total antioxidant capacity, TAC (8.77 ± 0.34 mg AAE/g) compared to other fruit peel samples. The application of LC-ESI-QTOF-MS/MS tentatively identified and characterized a total of 176 phenolics, including phenolic acids (49), flavonoids (86), lignans (11), stilbene (5) and other polyphenols (25) in all twenty peel samples. From HPLC-PDA quantification, the mango peel sample showed significantly higher phenolic content, particularly for phenolic acids (gallic acid, 14.5 ± 0.4 mg/g) and flavonoids (quercetin, 11.9 ± 0.4 mg/g), as compared to other fruit peel samples. These results highlight the importance of fruit peels as a potential source of polyphenols. This study provides supportive information for the utilization of different phenolic rich fruit peels as ingredients in food, feed, and nutraceutical products.


Antioxidants ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 592 ◽  
Author(s):  
Chengli Hou ◽  
Liguo Wu ◽  
Zhenyu Wang ◽  
Elena Saguer ◽  
Dequan Zhang

In this study, sheep plasma was submitted to Alcalase-hydrolysis and peptides with better antioxidant properties measured through both the ferric-reducing antioxidant power (FRAP) and the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging ability assays were isolated and identified. After hydrolysate ultrafiltration and semi-preparative reverse-phase high-performance liquid chromatography, nine fractions (F1–F9) were obtained, with the two first (F1 and F2) showing the greatest antioxidant potential. These two fractions were further separated by the AKTA purifier system to generate four (F1-1–F1-4) and five (F2-1–F2-5) fractions, respectively, with two of them (F1-2 and F2-1) exhibiting appreciable FRAP activity and DPPH radical scavenging ability. Using liquid chromatography-tandem mass spectrometry, three antioxidant peptides were identified. From their amino acid sequences (QTALVELLK, SLHTLFGDELCK, and MPCTEDYLSLILNR), which include amino acids that have been previously reported as key contributors to the peptide antioxidant properties, it can be maintained that they come mainly from serum albumin. These results suggested that the sheep plasma protein can be considered as a good source of antioxidant peptides and bring forth new possibilities for the utilization of animal blood by-products.


2020 ◽  
Vol 4 (4) ◽  
pp. 193-201
Author(s):  
Bei Liu ◽  
Qingqing Xu ◽  
Yujing Sun

Abstract Goji berry tea, a traditional herbal tea, is the main ate mode of goji berry in Asia, yet few studies in comparison with red goji berry tea and black goji berry tea are carried out. This study investigated the effects of water temperature and soak time on the colour, phytochemicals, and the antioxidant capacity [2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl radical (DPPH), and the ferric-reducing antioxidant power (FRAP)] of two goji berry tea. A comparison of the bioactive compounds and antioxidant activities between black and red goji berry tea was conducted. Results showed that both red and black goji berry tea were rich in phytochemicals, giving high antioxidant ability. The levels of bioactive compounds and the antioxidant activity of the two goji berry tea increased as the increases in soak temperature and time. Black goji berry tea had higher phytochemicals and antioxidant property than those of red goji berry tea. Infused at 100° water for the same time, the levels of total polysaccharides (150 mg/100 ml), total polyphenols (238 mg/ml), and antioxidant capacity (550 μmol/100 ml) of black goji berry tea were 3.5, 2, and 5 times higher, respectively, in comparison with red goji berry tea. The results of this study demonstrate that hot drink of goji berry in China is a good habit and black goji berry tea may be a better choice.


Sign in / Sign up

Export Citation Format

Share Document