scholarly journals Experimental evidence in support of the biological effects and physical basis of homeopathic potencies

2021 ◽  
Vol 11 (40) ◽  
pp. 142-143
Author(s):  
Nirmal Sukul

Background: Homeopathic potencies 12 cH and above cross the Avogadro number and, for this, do not contain any original drug molecules. Two major problems involved in the scientific study of potencies are (1) understanding the physical basis of potencies and (2) demonstrating the biological effects of potencies. The present study aims to address these questions. Methods and Results: In course of our experimental studies spanned over more than 30 years we have demonstrated significant effects of homeopathic potencies on man, animals and plants. We have also showed that potencies could be differentiated through their electronic spectra, and this difference in spectra can be attributed to the electron transfer interaction. In a molecular complex, electron of one molecule absorbs a quantum of visible radiation and is excited, not to a higher energy level of this molecule, but to one of the vacant high energy levels of the neighboring molecules. This process is known as electron or charge transfer interaction. This has been demonstrated in Iodine ө in two different solvents of CCl4 and aqueous ethanol (Sukul N C, Environ Ecol 17,866-872, 1999). We have further demonstrated that the effect of a homeopathic potency can be transmitted from one part of a plant to another, and also from one plant to another through water. I am presenting here a few selected cases of our experimental studies. Potentized Nux vomica significantly reduced ethanol consumption in rats by 73.7%and ethanol-induced sleep time in albino mice by 44.4%. Causticum 30 C and Rhus tox 30 C produced anti-inflamatory and anti-nocicptive effect on adjuvant arthritis in albino rats. Potentized homeopathic drugs reduced microfilaraemia by 28 to 100% and filariasis in two villages of West Bengal endemic for Bancroftian filaiasis. Potentized Cina and Thuja ameliorated trichinellosis in mice reducing larval population in muscles by 84% and 68%, respectively. Potencies of Agaricus and Nux vomica, produced excitatory effect on the isolated rat ileum. Potentized drugs altered firing rate of hypothalamic neurons in rats and cats. Nux vom 30 c and Merc cor 30c facilitated water permeability in erythrocytes of catfish in a test tube. Potencies of Merc cor and Merc iod enhanced α-amylase activity in vitro ,by 44 and 21%,respectively. Drugs ,that inhibit photosynthesis and plant growth in high doses, promote the same phenomena when applied on plants at ultra low doses. Potentized Cantharis, a homeopathic drug used for burn injuries, counter the effect of heat shock in Adhatoda vasica plants in terms of modulating the expression of heat-shock proteins in the plants. The effect of heat shock and of Cantharis treatment could be transmitted from one plant to another through water. The global network of surface water in a closed system is thought to be responsible for producing this effect. Several potentized homeopathic drugs show distinct variation from each other in their absorption spectra in ultra violet region of light. These drugs when mixed with sucrose solution, also show marked differences from each other at temperatures as low as 4 0 C and as high as 70 0 C. Electron transfer interaction may contribute to the characteristic spectral properties of a homeopathic potency. Conclusions: Homeopathic potencies could be detected and differentiated by their electronic spectra. Potencies show marked effect on animals, plants, ex vivo effect on isolated organs and in vitro effect on enzymes. Keywords: Homeopathic potencies, electronic spectra, ethanol intake, adjuvant arthritis, filariasis, Cantharis, Nux vomica

2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Lingling Zhang ◽  
Jianzong Chen

Polygonum multiflorum Thunb. (PM), a traditional Chinese medicinal herb, has been widely used in the Orient as a tonic and antiaging agent. 2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-glucoside (TSG, C20H22O9, FW = 406.38928) is one of the active components extracted from PM. TSG is an antioxidant agent, which exhibits remarkable antioxidative activities in vivo and in vitro. The antioxidant effect of TSG is achieved by its radical-scavenging effects. TSG can inhibit apoptosis and protect neuronal cells against injury through multifunctional cytoprotective pathways. TSG performs prophylactic and therapeutic activities against Alzheimer’s disease, Parkinson’s disease, and cerebral ischemia/reperfusion injury. It is also antiatherosclerotic and anti-inflammatory. However, the mechanisms underlying these pharmacological activities are unclear. This study aimed at reviewing experimental studies and describing the effectiveness and possible mechanisms of TSG.


Biomolecules ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 32 ◽  
Author(s):  
Subrat Kumar Bhattamisra ◽  
Kah Heng Yap ◽  
Vikram Rao ◽  
Hira Choudhury

Catalpol, an iridoid glucoside, is widely distributed in many plant families and is primarily obtained from the root of Rehmannia glutinosa Libosch. Rehmannia glutinosa is a plant very commonly used in Chinese and Korean traditional medicine for various disorders, including diabetes mellitus, neuronal disorders, and inflammation. Catalpol has been studied extensively for its biological properties both in vitro and in vivo. This review aims to appraise the biological effects of catalpol and their underlying mechanisms. An extensive literature search was conducted using the keyword “Catalpol” in the public domains of Google scholar, PubMed, and Scifinder. Catalpol exhibits anti-diabetic, cardiovascular protective, neuroprotective, anticancer, hepatoprotective, anti-inflammatory, and anti-oxidant effects in experimental studies. Anti-inflammatory and antioxidant properties are mostly related for its biological effect. However, some specific mechanisms are also elucidated. Elevated serotonin and BDNF level by catalpol significantly protect against depression and neurodegeneration. Catalpol demonstrated an increased mitochondrial biogenesis and activation of PI3K/Akt pathway for insulin sensitizing effect. Further, its cardiovascular protective effect was linked to PI3K/Akt, apelin/APJ and Jak-Stat pathway. Catalpol produced a significant reduction in cell proliferation and an increase in apoptosis in different cancer conditions. Overall, catalpol demonstrated multiple biological effects due to its numerous mechanisms including anti-inflammatory and antioxidant effects.


Author(s):  
Mahendra Vaijnath Kardile ◽  
Chandaragouda Patil ◽  
Ali Haidar ◽  
Umesh Bharat Mahajan ◽  
Sameer Goyal

Background: There is a dearth of chemico-analytical or instrumental methods for standardization and quality control of higher dilutions of homeopathic drugs. Aim: This review highlights the challenges in standardization of anti-inflammatory homeopathic drugs and suggests a battery of biological assays for their standardization. Methods: We retrieved a total 57 scientific reports from the experimental studies and scientific reviews published between January 1999 and June 2014 related to anti-inflammatory homeopathic drugs and their high dilutions. These comprised of 18 reports on preclinical evaluation, 15 on source materials, 9 on isolated constituents and 15 studies on in-vitro experiments. Few recent citations which supported the initial studies were added later during the compilation of the manuscript. Conclusion: Standardization and quality control of homeopathic mother tinctures and high dilutions warrants an urgent attention. As biological activities are observed to be attributed to the high dilutions which are practically devoid of active ingredients, their standardization may be done through the suggested battery of biological investigations. It is suggested that the current methods of standardization of homeopathic drugs need to be upgraded to include sensitive, reproducible and relevant biological assays so that the end users are assured of the quality, efficacy, and safety of homeopathic dilutions.


Author(s):  
K. Shankar Narayan ◽  
Kailash C. Gupta ◽  
Tohru Okigaki

The biological effects of short-wave ultraviolet light has generally been described in terms of changes in cell growth or survival rates and production of chromosomal aberrations. Ultrastructural changes following exposure of cells to ultraviolet light, particularly at 265 nm, have not been reported.We have developed a means of irradiating populations of cells grown in vitro to a monochromatic ultraviolet laser beam at a wavelength of 265 nm based on the method of Johnson. The cell types studies were: i) WI-38, a human diploid fibroblast; ii) CMP, a human adenocarcinoma cell line; and iii) Don C-II, a Chinese hamster fibroblast cell strain. The cells were exposed either in situ or in suspension to the ultraviolet laser (UVL) beam. Irradiated cell populations were studied either "immediately" or following growth for 1-8 days after irradiation.Differential sensitivity, as measured by survival rates were observed in the three cell types studied. Pattern of ultrastructural changes were also different in the three cell types.


1991 ◽  
Vol 65 (04) ◽  
pp. 355-359 ◽  
Author(s):  
E Gray ◽  
J Watton ◽  
S Cesmeli ◽  
T W Barrowcliffe ◽  
D P Thomas

SummaryThe in vitro anticoagulant activities of recombinant desulphatohirudin (r-hirudin) were studied in the activated partial thromboplastin time (APTT) and the thrombin generation test : systems. In the APTT at concentrations below 5 μg/ml, r-hirudin showed a dose-response curye. At concentrations above 5 μg/ml, the plasma became unclottable, but in the thrombin generation test , at least 10 μg/ml of r-hirudin was required for full inhibition of thrombin generation. The antithrombotic effect was assessed using a rabbit venous stasis model; 150 μg/ml r-hirudin completely prevented thrombus formation at 10 and 20 min stasis. At antithrombotic dose, the mean bleeding time ratio measured in a rabbit ear template model, was not prolonged over control values. At higher doses, the bleeding time ratios were higher than those observed for the same dosage of heparin. These data indicate that while r-hirudin is an effective antithrombotic agent, antithrombotic doses have to be carefully titrated to avoid excessive bleeding.


Author(s):  
Н.В. Белобородова ◽  
В.В. Мороз ◽  
А.Ю. Бедова

Интеграция метаболизма макроорганизма и его микробиоты, обеспечивающая в норме симбиоз и саногенез, нарушается при заболеваниях, травме, критическом состоянии, и вектор взаимодействия может изменяться в пользу прокариотов по принципу «метаболиты бактерий - против хозяина». Анализ литературы показал, что, с одной стороны, имеется живой интерес к ароматическим микробным метаболитам, с другой - отсутствует четкое представление об их роли в организме человека. Публикации, касающиеся ряда ароматических микробных метаболитов (фенилкарбоновых кислот, ФКК), как правило, не связаны между собой по тематике и направлены на решение тех или иных прикладных задач в разных областях биологии и медицины. Цель обзора - анализ информации о происхождении, биологических эффектах ФКК в экспериментах in vitro и in vivo , и клинических наблюдениях. Обобщая результаты приведенных в обзоре исследований на клеточном, субклеточном и молекулярном уровнях, логично предположить участие ароматических микробных метаболитов в патогенезе полиорганной недостаточности при сепсисе. Наиболее перспективным для раскрытия роли ароматических микробных метаболитов представляется изучение механизмов вторичной почечной недостаточности и септической энцефалопатии. Важным направлением для будущих исследований является изучение влияния продуктов микробной биодеградации ароматических соединений на развитие диссеминированного внутрисосудистого свертывания крови, артериальной гипотензии и септического шока. Результаты дальнейших исследований будут иметь не только фундаментальное значение, но и обогатят практическую медицину новыми диагностическими и лечебными технологиями. Significant increases in blood concentrations of some aromatic metabolites (phenylcarboxylic acids, PhCAs) in patients with sepsis have been previously shown. Enhanced bacterial biodegradation of aromatic compounds has been demonstrated to considerably contribute to this process. Integration of macroorganism metabolism and its microbiota, which provides normal symbiosis and sanogenesis, is disturbed in diseases, trauma, and critical conditions. Direction of this interaction may change in favor of prokaryotes according to the principle, “bacterial metabolites are against the host”. Analysis of literature showed a particular interest of many investigators to aromatic microbial metabolites. However, there is no clear understanding of their role in the human body. Publications on PhCAs are generally not thematically interrelated and usually focus on solving applied tasks in different fields of biology and medicine. The aim of this work was to consolidate existing information about origin and biological effects of PhCAs in in vitro / in vivo experiments and some clinical findings. The presented summary of reported data from studies performed at cellular, sub-cellular, and molecular levels suggests participation of aromatic microbial metabolites in the pathogenesis of multiple organ failure in sepsis. Studying mechanisms of secondary renal failure and septic encephalopathy is most promising for discovering the function of aromatic microbial metabolites. Effects of microbial biodegradation products of aromatic substances on development of disseminated intravascular coagulation, hypotension, and septic shock are an important challenge for future studies. Results of further investigations will be not only fundamental, but will also enrich medical practice with new diagnostic and therapeutic technologies.


2019 ◽  
Author(s):  
C. Tigrine ◽  
A. Kameli

In this study a polyphenolic extract from Cleome arabica leaves (CALE) was investigated for its antioxidant activity in vitro using DPPH•, metal chelating and reducing power methods and for its protective effects against AraC-induced hematological toxicity in vivo using Balb C mice. Results indicated that CALE exhibited a strong and dose-dependent scavenging activity against the DPPH• free radical (IC50 = 4.88 μg/ml) and a high reducing power activity (EC50 = 4.85 μg/ml). Furthermore, it showed a good chelating effects against ferrous ions (IC50 = 377.75 μg/ml). The analysis of blood showed that subcutaneous injection of AraC (50 mg/kg) to mice during three consecutive days caused a significant myelosupression (P < 0.05). The combination of CALE and AraC protected blood cells from a veritable toxicity. Where, the number of the red cells, the amount of hemoglobin and the percentage of the hematocrite were significantly high. On the other hand, AraC cause an elevation of body temperature (39 °C) in mice. However, the temperature of the group treated with CALE and AraC remained normal and did not exceed 37.5 °C. The observed biological effects of CALE, in vitro as well as in vivo, could be due to the high polyphenol and flavonoid contents. In addition, the antioxidant activity of CALE suggested to be responsible for its hematoprotective effect.


Sign in / Sign up

Export Citation Format

Share Document