scholarly journals Effects of total replacement of soybean meal and corn on ruminal fermentation, volatile fatty acids, protozoa concentration, and gas production

2018 ◽  
Vol 61 (1) ◽  
pp. 123-130 ◽  
Author(s):  
Amani Bahri ◽  
Marga Joy ◽  
Mireia Blanco ◽  
Juan Ramon Bertolin ◽  
Marouen Amaraoui ◽  
...  

Abstract. The main purpose of this study is to evaluate the effect of total replacement of soybean meal and corn with triticale and faba bean or field pea on rumen fermentation, protozoa counts, and gas production of lactating ewes. A total of 30 Sicilo-Sarde ewes were randomly allocated into three groups and were fed 1.8 kg drymatter of oat hay plus 500 g of one of three concentrates: the first concentrate (CS) was mainly composed of soybean meal, corn, and barley; the second (TFB) was formed by triticale and faba bean; and the third (TFP) was composed of triticale and field pea. The type of concentrate did not affect ruminal pH or ammonia nitrogen concentration (P > 0.05). The individual concentrations of volatile fatty acids showed a significant interaction between the type of concentrate and sampling time (P < 0.05), except for Butyric and Isobutyric acids. Within a post-feeding time, the pattern of evolution of total volatile fatty, acetic, and propionic acids differed significantly at 2 h post feeding (P < 0.05), while butyric and valeric acid changed at 0 and 4 h post feeding. The type of concentrate affected the total number of ciliate protozoa and the Isotricha species (P < 0.05), whereas Entodinium, Ophryoscolex, and Polyplastron were similar among concentrates (P > 0.05). The cumulative gas production from the in vitro fermentation, the time of incubation, and their interaction was affected by concentrate (P < 0.001). The substitution of soybean meal and corn in the concentrate with faba bean or field peas and triticale might maintain rumen parameters of dairy ewes.

Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 108
Author(s):  
Yichong Wang ◽  
Sijiong Yu ◽  
Yang Li ◽  
Shuang Zhang ◽  
Xiaolong Qi ◽  
...  

Nutritional strategies can be employed to mitigate greenhouse emissions from ruminants. This article investigates the effects of polyphenols extracted from the involucres of Castanea mollissima Blume (PICB) on in vitro rumen fermentation. Three healthy Angus bulls (350 ± 50 kg), with permanent rumen fistula, were used as the donors of rumen fluids. A basic diet was supplemented with five doses of PICB (0%–0.5% dry matter (DM)), replicated thrice for each dose. Volatile fatty acids (VFAs), ammonia nitrogen concentration (NH3-N), and methane (CH4) yield were measured after 24 h of in vitro fermentation, and gas production was monitored for 96 h. The trial was carried out over three runs. The results showed that the addition of PICB significantly reduced NH3-N (p < 0.05) compared to control. The 0.1%–0.4% PICB significantly decreased acetic acid content (p < 0.05). Addition of 0.2% and 0.3% PICB significantly increased the propionic acid content (p < 0.05) and reduced the acetic acid/propionic acid ratio, CH4 content, and yield (p < 0.05). A highly significant quadratic response was shown, with increasing PICB levels for all the parameters abovementioned (p < 0.01). The increases in PICB concentration resulted in a highly significant linear and quadratic response by 96-h dynamic fermentation parameters (p < 0.01). Our results indicate that 0.2% PICB had the best effect on in-vitro rumen fermentation efficiency and reduced greenhouse gas production.


Author(s):  
Qiangqiang Li ◽  
Yunfeng Ma ◽  
Boying Du ◽  
Qi Wang ◽  
Qiongqiong Hu ◽  
...  

Animals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 957 ◽  
Author(s):  
Lijun Wang ◽  
Yang Li ◽  
Yonggen Zhang ◽  
Lihua Wang

The objectives of this study were to investigate the ruminal bacterial changes during the feeding cycle. Six ruminally cannulated Holstein cows were used in this experiment. The high-forage (HF) and high-concentrate (HC) diets contained 70% and 30% dietary forage, respectively. Dairy cows were fed their respective diets for at least 28 days, then samples were collected at 0, 2, 4, 9, 12, 16 and 20 h post-feeding. The results showed that pH, the concentration of (total volatile fatty acids) TVFAs and the percentages of acetate, propionate and butyrate were significantly affected by diet and time interactions. The diversity of rumen microbiota in HF dietary treatments was significantly higher than that in the HC dietary treatments. ACE (Abundance-based Coverage Estimator) and Chao 1 indices peak at 12 h post-feeding and then decline over the next 8 h. The rumen microbiota was mainly composed of the phyla Firmicutes, Bacteroidetes and Proteobacteria without considering the diet and time. The Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) functional profile prediction indicated that the carbohydrate metabolism was different at 9, 12 and 20 h post-feeding time, which revealed that the soluble carbohydrates were enough for microbial fermentation shortly after feeding. This research gave a further explanation of the interactions among rumen microorganisms, which could further help manipulate the rumen metabolism.


1986 ◽  
Vol 21 (1) ◽  
pp. 58-70 ◽  
Author(s):  
P.H. Jones ◽  
J. Szekely

Abstract Volatile fatty acids (VFA’s) produced during anaerobic digestion of sludge have higher commercial value than methane produced subsequently. Therefore it was decided to determine conditions necessary to maximise production of VFA’s. Five anaerobic digesters were operated in parallel in the laboratory to investigate the effect of pH on the formation of VFA’s. Concentrations of individual fatty acids were measured. Both VFA production as well as gas production was favoured by pH approaching neutrality.


2019 ◽  
Vol 64 (No. 8) ◽  
pp. 352-360
Author(s):  
Jiu Yuan ◽  
Xinjie Wan

The associative effects (AE) between concentrate (C), peanut shell (P) and alfalfa (A) were investigated by means of an automated gas production (GP) system. The C, P and A were incubated alone or as 40 : 60 : 0, 40 : 45 : 15, 40 : 30 : 30, 40 : 15 : 45, 40 : 0 : 60 and 30 : 70 : 0, 30 : 55 : 15, 30 : 40 : 30, 30 : 25 : 45, 30 : 10 : 60, 30 : 0 : 70 mixtures where the C : roughage (R) ratios were 40 : 60 and 30 : 70. Samples (0.2000 ± 0.0010 g) of single feeds or mixtures were incubated for 96 h in individual bottles (100 ml) with 30 ml of buffered rumen fluid. GP parameters were analysed using a single exponential equation. After incubation, the residues were used to determine pH, dry matter digestibility (DMD), organic matter digestibility (OMD), volatile fatty acids (VFA) and ammonia nitrogen (NH<sub>3</sub>-N) of the incubation fluid, and their single factor AE indices (SFAEI) and multiple-factors AE indices (MFAEI) were determined. The results showed that group of 30 peanut shell had higher SFAEI of GP<sub>48 h</sub>, DMD, OMD and total volatile fatty acids (p &lt; 0.05) and MFAEI (p &lt; 0.05) than groups 60, 45 and 0 when C : R was 40 : 60. The group of 10 peanut shell showed higher SFAEI of GP<sub>48 h</sub>, DMD and OMD (p &lt; 0.05) than groups 70, 55 and 40 and MFAEI (p &lt; 0.01) when C : R was 30 : 70. It is concluded that optimal SFAEI and MFAEI were obtained when the C : P : A ratios were 40 : 30 : 30 and 30 : 10 : 60.


2020 ◽  
Vol 98 (5) ◽  
Author(s):  
Pedro H V Carvalho ◽  
Ana C J Pinto ◽  
Danilo D Millen ◽  
Tara L Felix

Abstract The objectives of this study were to compare ruminal total tract digestibility, bacterial communities, and eating and rumination activity between Holstein and Angus steers fed grain- or forage-based diets. Six Holstein steers (average body weight [BW] = 483 ± 23 kg) and six Angus steers (average BW = 507 ± 29 kg), previously fitted with rumen cannulae, were fed in a crossover design with a 2 × 2 factorial arrangement of four treatments: 1) Holsteins fed a grain-based diet, 2) Holsteins fed a forage-based diet, 3) Angus fed a grain-based diet, and 4) Angus fed a forage-based diet. Each period was 35 d with 26 d of diet adaptation and 9 d of sample collection. On days 1 and 2 of collection, feeding activity was recorded for 48 h. On day 3, rumen contents were sampled to measure ruminal pH at 0, 3, 6, 12, and 18 h after feeding. A portion of the strained ruminal fluid was subsampled at 0, 3, and 6 h for volatile fatty acids (VFA) analysis. Rumen contents were subsampled at 3 h for analysis of bacterial communities. From day 4 to 8, total fecal excretion, feed, and refusals samples were collected and analyzed for dry matter (DM), neutral detergent fiber (NDF), and starch. On days 8 and 9 (0 and 3 h post-feeding, respectively), total reticulorumen evacuation was conducted and contents were weighed. Data were analyzed using the MIXED procedures in SAS (v9.4 SAS Inst. Inc., Cary, NC). Repeated measures were used to analyze changes in ruminal pH and VFA over time. There were no interactions of diet × breed (P ≥ 0.07). While the main effects of diet were expected, unique to these data is the fact that bacterial diversity and richness were reduced (P &lt; 0.01) in cattle fed grain-based diets. There was no main effect (P &gt; 0.34) of breed on total tract DM, organic matter, and starch digestibility, but Angus cattle had greater (P = 0.01) NDF digestibility than Holsteins. The increased NDF digestibility may be associated with a numerical (P = 0.08) increased numbers of bacterial species in Angus steers compared with Holstein steers. Holstein steers also spent more time (P ≤ 0.05) ruminating than Angus steers. There was no effect (P &gt; 0.80) of breed on reticulorumen content at feeding time; however, Holstein steers had greater (P = 0.04) reticulorumen content on a wet basis 3 h post-feeding. Although Holstein steers spent more time ruminating, Angus steers were better able to digest NDF when compared with Holsteins, regardless of basal diet, and this improvement may be related to changes in bacterial communities in the rumen or to rumination activity.


2003 ◽  
Vol 48 (4) ◽  
pp. 229-233 ◽  
Author(s):  
P.A. Scherer ◽  
S. Dobler ◽  
S. Rohardt ◽  
R. Loock ◽  
B. Büttner ◽  
...  

Since April 2000 a two-step anaerobic plant with two subsequent 500 m3 reactors has been producing biogas from fodder beet silage (pH 4.1) as the sole substrate. The plant is located at Kirchlengern near Bielefeld, Germany. Initially the reactors were inoculated with swine manure at 37°C. After a start-up phase the process was sustained at pH 7.5-8.0 by feeding with the silage as sole substrate twice a day. Parallel to the biogas plant at Kirchlengern four one-step laboratory reactors were continuously driven at temperatures of 37°C, 45°C, 60°C and 65°C. They were fed with the same silage, but only once per day (one impulse). The organic loading rate (OLR) was adjusted to 3.9 g volatile solids (VS)/(l*d) with a concomitant hydraulic retention time (HRT) of 27 d. There was no problem with starting the reactors, but after 86 days the volumetric gas production of the 65°C reactor ceased and a high amount of approximately 130 mM propionate could be determined. By decreasing the temperature down to 60°C a stable reactor performance was recovered for a period of at least 250 further days. During impulse feeding it was observed that the quickest recovery of gas production could be observed at 37°C or at 45°C. Recovery of 75% gas volume (related to the value before or after impulse feeding) was obtained after 5.5 and 7.5 h of feeding time point whereas the 60°C reactor needed 16 h. Slight significant differences were seen in the spectrum of volatile fatty acids (VFA) reaching at 37° or 45°C its maximum with 10-30 mM total VFA at 2-3 h after feeding. After this the VFA level declined to nearly zero (except for the 60°C reactor). Therefore the 37°C reactor was favoured. A double experiment with a second 37°C reactor was started by a somewhat different inoculation procedure from the remaining 3 reactors, but revealed similar results. By increasing the temperature no significantly different specific gas production rates and methane yields could be observed, e.g. it gave 600-700 l biogas from 1 kg VS. The corresponding methane content ranged between 62-64%. With a methane content of 63 ± 1% a yield of 40.1 ± 2 m3 methane/ton fresh fodder beet silage was obtained.


2016 ◽  
Vol 56 (3) ◽  
pp. 437 ◽  
Author(s):  
S. A. Terry ◽  
R. S. Ribeiro ◽  
D. S. Freitas ◽  
G. D. Delarota ◽  
L. G. R. Pereira ◽  
...  

The present study examined the effects of Tithonia diversifolia on in vitro methane (CH4) production and ruminal fermentation characteristics. The experiment was conducted as a completely randomised design (CRD) using a control (0% T. diversifolia) and three treatment groups with different concentrations (6.9%, 15.2%, 29.2%) of T. diversifolia, which replaced up to 15.2% and 14% dry matter (DM) of fresh sugarcane and concentrates, respectively. Ruminal fluid was obtained from two ruminally cannulated non-lactating Holstein × Zebu heifers maintained on a diet consisting of T. diversifolia, fresh sugarcane and 4 kg of concentrates. The inclusion of T. diversifolia had no effect (P ≥ 0.15) on cumulative gas production (mL, mL/g incubated DM, mL/g digested DM) or in vitro DM disappearance (%). Carbon dioxide (%, mL, mL/g incubated DM) linearly decreased (P ≤ 0.001) and CH4 (%, mL, mL/g incubated DM) quadratically increased (P ≤ 0.01) with increasing concentrations of T. diversifolia replacing fresh sugarcane and concentrates. The total volatile fatty acids (mM) and acetate (A) proportion of total volatile fatty acids (mmol/100 mmol) linearly increased (P < 0.01) with the increasing inclusion of T. diversifolia. Butyrate (mmol/100 mmol) increased quadratically (P ≤ 0.02), while propionate (P; mmol/100 mmol) decreased quadratically (P < 0.02). The A : P ratio increased linearly (P < 0.0001) with increasing amounts of T. diversifolia in the diet. These results indicated that increasing the amount of Tithonia diversifolia in the substrate DM increased the A : P ratio, which resulted in a six-fold increase of CH4 production when fresh sugarcane and concentrates were replaced at up to 15.2% and 14% (DM basis), respectively.


Sign in / Sign up

Export Citation Format

Share Document