scholarly journals The Effects of Different Concentrate-to-Forage Ratio Diets on Rumen Bacterial Microbiota and the Structures of Holstein Cows during the Feeding Cycle

Animals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 957 ◽  
Author(s):  
Lijun Wang ◽  
Yang Li ◽  
Yonggen Zhang ◽  
Lihua Wang

The objectives of this study were to investigate the ruminal bacterial changes during the feeding cycle. Six ruminally cannulated Holstein cows were used in this experiment. The high-forage (HF) and high-concentrate (HC) diets contained 70% and 30% dietary forage, respectively. Dairy cows were fed their respective diets for at least 28 days, then samples were collected at 0, 2, 4, 9, 12, 16 and 20 h post-feeding. The results showed that pH, the concentration of (total volatile fatty acids) TVFAs and the percentages of acetate, propionate and butyrate were significantly affected by diet and time interactions. The diversity of rumen microbiota in HF dietary treatments was significantly higher than that in the HC dietary treatments. ACE (Abundance-based Coverage Estimator) and Chao 1 indices peak at 12 h post-feeding and then decline over the next 8 h. The rumen microbiota was mainly composed of the phyla Firmicutes, Bacteroidetes and Proteobacteria without considering the diet and time. The Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) functional profile prediction indicated that the carbohydrate metabolism was different at 9, 12 and 20 h post-feeding time, which revealed that the soluble carbohydrates were enough for microbial fermentation shortly after feeding. This research gave a further explanation of the interactions among rumen microorganisms, which could further help manipulate the rumen metabolism.

2020 ◽  
Vol 98 (5) ◽  
Author(s):  
Pedro H V Carvalho ◽  
Ana C J Pinto ◽  
Danilo D Millen ◽  
Tara L Felix

Abstract The objectives of this study were to compare ruminal total tract digestibility, bacterial communities, and eating and rumination activity between Holstein and Angus steers fed grain- or forage-based diets. Six Holstein steers (average body weight [BW] = 483 ± 23 kg) and six Angus steers (average BW = 507 ± 29 kg), previously fitted with rumen cannulae, were fed in a crossover design with a 2 × 2 factorial arrangement of four treatments: 1) Holsteins fed a grain-based diet, 2) Holsteins fed a forage-based diet, 3) Angus fed a grain-based diet, and 4) Angus fed a forage-based diet. Each period was 35 d with 26 d of diet adaptation and 9 d of sample collection. On days 1 and 2 of collection, feeding activity was recorded for 48 h. On day 3, rumen contents were sampled to measure ruminal pH at 0, 3, 6, 12, and 18 h after feeding. A portion of the strained ruminal fluid was subsampled at 0, 3, and 6 h for volatile fatty acids (VFA) analysis. Rumen contents were subsampled at 3 h for analysis of bacterial communities. From day 4 to 8, total fecal excretion, feed, and refusals samples were collected and analyzed for dry matter (DM), neutral detergent fiber (NDF), and starch. On days 8 and 9 (0 and 3 h post-feeding, respectively), total reticulorumen evacuation was conducted and contents were weighed. Data were analyzed using the MIXED procedures in SAS (v9.4 SAS Inst. Inc., Cary, NC). Repeated measures were used to analyze changes in ruminal pH and VFA over time. There were no interactions of diet × breed (P ≥ 0.07). While the main effects of diet were expected, unique to these data is the fact that bacterial diversity and richness were reduced (P < 0.01) in cattle fed grain-based diets. There was no main effect (P > 0.34) of breed on total tract DM, organic matter, and starch digestibility, but Angus cattle had greater (P = 0.01) NDF digestibility than Holsteins. The increased NDF digestibility may be associated with a numerical (P = 0.08) increased numbers of bacterial species in Angus steers compared with Holstein steers. Holstein steers also spent more time (P ≤ 0.05) ruminating than Angus steers. There was no effect (P > 0.80) of breed on reticulorumen content at feeding time; however, Holstein steers had greater (P = 0.04) reticulorumen content on a wet basis 3 h post-feeding. Although Holstein steers spent more time ruminating, Angus steers were better able to digest NDF when compared with Holsteins, regardless of basal diet, and this improvement may be related to changes in bacterial communities in the rumen or to rumination activity.


1968 ◽  
Vol 14 (4) ◽  
pp. 409-416 ◽  
Author(s):  
G. A. Jones

When acetohydroxamic acid was incubated with washed suspensions of bovine rumen microorganisms the urease activity of the suspensions was depressed; activity could not be restored by the addition of divalent cations which, in the absence of acetohydroxamic acid, stimulated the urease activity of the cells. Acetohydroxamic acid was slowly degraded by the rumen microbiota. When the compound was incorporated into a non-selective medium for the enumeration of rumen bacteria it completely prevented visible colony development by some components of the inoculum and retarded the rate of multiplication of others. Acetohydroxamic acid inhibited the production of volatile fatty acids from added cellulose in strained rumen fluid and modified the molar proportions of acetate, propionate, and butyrate produced from the substrate; whereas in the absence of acetohydroxamic acid propionate production was favored at the expense of acetate; in its presence the acetate:propionate ratio remained constant. The effect of acetohydroxamic acid upon rumen microbial activities in vitro was therefore not limited to inhibition of rumen urease. It was impossible, however, to infer from the results obtained whether the potential value of the compound as a urease inhibitor in vivo would be diminished for this reason; this is because the influence of acetohydroxamic acid on the rumen microbiota in vivo is probably subject to modification by factors, such as the composition of the animal's diet, which were not investigated.


2018 ◽  
Vol 61 (1) ◽  
pp. 123-130 ◽  
Author(s):  
Amani Bahri ◽  
Marga Joy ◽  
Mireia Blanco ◽  
Juan Ramon Bertolin ◽  
Marouen Amaraoui ◽  
...  

Abstract. The main purpose of this study is to evaluate the effect of total replacement of soybean meal and corn with triticale and faba bean or field pea on rumen fermentation, protozoa counts, and gas production of lactating ewes. A total of 30 Sicilo-Sarde ewes were randomly allocated into three groups and were fed 1.8 kg drymatter of oat hay plus 500 g of one of three concentrates: the first concentrate (CS) was mainly composed of soybean meal, corn, and barley; the second (TFB) was formed by triticale and faba bean; and the third (TFP) was composed of triticale and field pea. The type of concentrate did not affect ruminal pH or ammonia nitrogen concentration (P > 0.05). The individual concentrations of volatile fatty acids showed a significant interaction between the type of concentrate and sampling time (P < 0.05), except for Butyric and Isobutyric acids. Within a post-feeding time, the pattern of evolution of total volatile fatty, acetic, and propionic acids differed significantly at 2 h post feeding (P < 0.05), while butyric and valeric acid changed at 0 and 4 h post feeding. The type of concentrate affected the total number of ciliate protozoa and the Isotricha species (P < 0.05), whereas Entodinium, Ophryoscolex, and Polyplastron were similar among concentrates (P > 0.05). The cumulative gas production from the in vitro fermentation, the time of incubation, and their interaction was affected by concentrate (P < 0.001). The substitution of soybean meal and corn in the concentrate with faba bean or field peas and triticale might maintain rumen parameters of dairy ewes.


1929 ◽  
Vol 19 (4) ◽  
pp. 649-655 ◽  
Author(s):  
V. Subrahmanyan

Methods for extraction, concentration and determination of minute quantities of soluble carbohydrates, lactic acid and volatile fatty acids have been described. Different factors affecting the accuracy of the determinations have been studied and corrections, where necessary, have been suggested.


2011 ◽  
Vol 79 (1) ◽  
pp. 16-25 ◽  
Author(s):  
Qendrim Zebeli ◽  
Sarah J Terrill ◽  
Alberto Mazzolari ◽  
Suzanna M Dunn ◽  
Wen Z Yang ◽  
...  

This study evaluated the effects of intraruminal administration ofMegasphaera elsdeniion ruminal fermentation patterns, the profile of plasma metabolites, and milk yield and composition of mid-lactation dairy cows. Eight primiparous, ruminally cannulated Holstein cows were arranged in a paired 2×2 crossover design. Cows were randomly assigned to one of two treatments: 1) intraruminal inoculation of 35 ml suspension per day ofM. elsdeniiATCC 25940 (MEGA), containing 108cfu/ml of bacteria, dissolved in 35 ml of saline (0·15m), or 2) carrier alone (35 ml saline; CTR). Both postprandial and preprandial rumen volatile fatty acids (VFA) and plasma metabolite measurements were analysed. Postprandial VFA patterns were affected the most, with butyrate (P<0·01) and valerate (P<0·01) proportions increasing, and acetate (P<0·01), isobutyrate (P=0·05) and isovalerate (P<0·01) decreasing in MEGA cows. Preprandial data measured at various days showed that MEGA dosage tended to increase the molar proportion of propionate (P=0·09) and lower the acetate to propionate ratio (P=0·07) in the rumen fluid. There was no effect of treatment on rumen pH and on the concentration of lactate in the rumen as well as on selected preprandial plasma metabolites. Postprandial plasma concentrations of cholesterol tended to increase (P=0·07) in MEGA cows compared with CTR. Concentrations of non-esterified fatty acids (NEFA) in the plasma were lower in MEGA cows after the morning feeding (P<0·01). Sampling hour also affected plasma NEFA in this study. Plasma β-hydroxybutyrate (BHBA) were not affected by the treatment (P>0·05); however, after the morning feeding BHBA concentration was increased in both groups of cows. Dry matter intake and milk yield and composition were not affected by treatment. In conclusion, results indicate thatM. elsdeniihas the potential to modulate the rumen fermentation profile in mid-lactation Holstein cows, but these effects were only slightly reflected in changes in plasma metabolites and milk composition.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Qingshan Fan ◽  
Metha Wanapat ◽  
Tianhai Yan ◽  
Fujiang Hou

Abstract Background Rumen microbiota in ruminants are vital for sustaining good rumen ecology, health, and productivity. Currently, limited information is available regarding the response of yaks (Bos grunniens) to fluctuating environments, especially the rumen microbiome. To address this, we investigated the diet, rumen bacterial community, and volatile fatty acids (VFA) of rumen fluid of yaks raised in the great Qinghai-Tibet plateau (QTP) at 2800 (low altitude, L), 3700 (middle altitude, M), and 4700 m (high altitude, H) above sea level. Results The results showed that despite a partial diet overlap, H yaks harbored higher fibrous fractious contents than the M and L grazing yaks. Bacteria including Christensenellaceae_R-7_group, Ruminococcus_1, Romboutsia, Alloprevotella, Eubacterium coprostanoligenes, Clostridium, Streptococcus, and Treponema were found to be enriched in the rumen of yaks grazing at H. They also showed higher rumen microbial diversity and total VFA concentrations than those shown by yaks at M and L. Principal coordinates analysis (PCoA) on weighted UniFrac distances revealed that the bacterial community structure of rumen differed between the three altitudes. Moreover, Tax4fun metagenome estimation revealed that microbial genes associated with energy requirement and carbohydrate metabolic fate were overexpressed in the rumen microbiota of H yaks. Conclusions Collectively, our results revealed that H yaks had a stronger herbage fermenting ability via rumen microbial fermentation. Their enhanced ability of utilizing herbage may be partly owing to a microbiota adaptation for more energy requirements in the harsh H environment, such as lower temperature and the risk of hypoxia.


2020 ◽  
Vol 8 (2) ◽  
pp. 231 ◽  
Author(s):  
Jun Zhang ◽  
Nan Zheng ◽  
Weijun Shen ◽  
Shengguo Zhao ◽  
Jiaqi Wang

Synchrony of energy and nitrogen release in rumen has been proposed to maximize ruminal microbial fermentation. However, the information regarding bacterial community composition and its metabolism under a higher or lower degree of synchronization is limited. In our study, a 0 to 6 h post-feeding infusion (first half infusion, FHI), 6 to 12 h post-feeding infusion (second half infusion, SHI), and 0 to 12 h post-feeding infusion (continuous infusion, CI) of maltodextrin were used to simulate varying degrees of synchronization of energy and nitrogen release in a rumen simulation system. In addition, the bacterial community, metabolite, enzyme activity, and microbial protein synthesis (MPS) were evaluated. Compared with the FHI and CI, the relative abundance of Fibrobacter, Ruminobacter, BF311, and CF231 decreased in the SHI, but that of Klebsiella and Succinivibrio increased in the SHI. The NH3-N and branched-chain volatile fatty acids were significantly higher, but propionate content and activities of glutamate dehydrogenase (GDH) and alanine dehydrogenase were significantly lower in the SHI than those in the FHI and CI. The SHI had lower MPS and less efficiency of MPS than the FHI and CI, which indicated that the SHI had a lower degree of synchronization. Correlation analysis showed that MPS was positively related to GDH activity and relative abundance of Fibrobacter but negatively related to NH3-N and relative abundance of Klebsiella. Therefore, a higher degree of synchronization of energy and nitrogen release increased MPS partly via influencing the bacterial community, metabolism, and enzyme activities of ammonia assimilation in the in vitro fermenters.


1991 ◽  
Vol 71 (3) ◽  
pp. 725-737 ◽  
Author(s):  
E. Charmley ◽  
D. M. Veira ◽  
L. Aroeira ◽  
H. C. V. Codagnone ◽  
G. Butler

Eight ruminally cannulated wethers were used in a factorial trial to examine the effect of frequency of feeding alfalfa silage and sucrose supplementation on voluntary intake, digestibility, rumen fermentation and rate and extent of digestion in and passage from the rumen. When diets were fed ad libitum, frequency of feeding had no effect on voluntary intake, apparent digestibility or the postfeeding concentrations of rumen ammonia N, volatile fatty acids (VFA) and pH. Similarly, VFA ratios and fluid kinetics in the rumen were unaffected. Supplementation with sucrose reduced ruminal concentrations of ammonia N at the higher level of feeding but failed to influence any other measured parameters. When intake was restricted (18 g DM kg−1 body weight), increased feeding frequency reduced the post-feeding ruminal ammonia peak and reduced the post-feeding decline in pH; however, sucrose supplementation had no effect. Kinetics of the liquid phase in the rumen, particulate rate of passage and rate of digestion were not affected by feeding frequency or sucrose supplementation. It was concluded that effects observed at a restricted feeding level may not be apparent when feed is available ad libitum and vice versa. Key words: Sucrose, feeding frequency, alfalfa, silage, sheep


Sign in / Sign up

Export Citation Format

Share Document