scholarly journals The 2007–2011 evolution of tropical methane in the mid-troposphere as seen from space by MetOp-A/IASI

2013 ◽  
Vol 13 (8) ◽  
pp. 4279-4289 ◽  
Author(s):  
C. Crevoisier ◽  
D. Nobileau ◽  
R. Armante ◽  
L. Crépeau ◽  
T. Machida ◽  
...  

Abstract. Since July 2007, monthly averages of mid-tropospheric methane have been retrieved in the tropics over land and sea, by day and night, from IASI onboard MetOp-A, yielding a complete view of the geographical distribution, seasonality and long-term tendency of methane in the mid-troposphere. Retrieved methane displays a clear seasonal cycle of ~25 ppbv in the northern tropics, with a maximum in November and a minimum in April–May, a more complex cycle of ~15 ppbv in the southern tropics, and a south-to-north latitudinal variation of ~30 ppbv – in good agreement with regular aircraft measurements of the CONTRAIL program. Comparisons with CARIBIC aircraft measurements made at ~11 km yield an averaged difference between collocated IASI estimates and CARIBIC measurements of 7.2 ppbv with a standard deviation of 13.1 ppbv. Comparisons with aircraft measurements made above 6 km during five HIPPO campaigns give an averaged difference between collocated IASI estimates and HIPPO measurements of 5.1 ppbv with a standard deviation of 16.3 ppbv. These comparisons show that IASI captures well the evolution of mid-tropospheric methane. In particular, in 2007 and 2008, IASI shows an increase of mid-tropospheric methane in the tropical region of 9.5 ± 2.8 and 6.3 ± 1.7 ppbv yr−1, respectively – in excellent agreement with the rate of increase measured at the surface after almost a decade of near-zero growth. IASI also indicates a slowing down of this increase in the following years to ~2 ppbv yr−1, with the highest increase in 2010. Assuming that the recent evolution of methane is mostly due to an increase in surface emissions, IASI might indicate a decrease in tropical wetland emissions for the period 2009–2011 compared to 2007–2008, in agreement with decreasing tropical precipitation over this period, together with an increase in biomass burning emissions in 2010 in the southern tropics.

2012 ◽  
Vol 12 (9) ◽  
pp. 23731-23757 ◽  
Author(s):  
C. Crevoisier ◽  
D. Nobileau ◽  
R. Armante ◽  
L. Crépeau ◽  
T. Machida ◽  
...  

Abstract. Since July 2007, monthly averages of mid-tropospheric methane are retrieved in the Tropics over land and sea, by day and night, from IASI onboard MetOp-A, yielding a complete view of the geographical distribution, seasonality and long-term tendency of methane in the mid-troposphere. Retrieved methane displays a clear seasonal cycle of ~25 ppbv in the Northern Tropics, with a maximum in November and a minimum in April–May, a more complex cycle of ~15 ppbv in the Southern Tropics, and a south-to-north latitudinal variation of ~30 ppbv, in good agreement with regular aircraft measurements of the CONTRAIL program. Comparisons with CARIBIC aircraft measurements made at ~11 km yield an averaged difference between collocated IASI estimates and CARIBIC measurements of 7.2 ppbv with a standard deviation of 13.1 ppbv, and show that IASI captures well the evolution of mid-tropospheric methane. In particular, in 2007 and 2008, IASI shows an increase of mid-tropospheric methane in the tropical region of 9.5 ± 2.8 and 6.3 ± 1.7 ppbv yr−1 respectively, in excellent agreement with the rate of increase measured at the surface after almost a decade of near-zero growth. IASI also indicates a slowing down of this increase in the following years to ~2 ppbv yr−1, with the highest increase in 2010. Assuming that the recent evolution of methane is mostly due to an increase in surface emissions, IASI might indicate a decrease in tropical wetland emissions for the period 2009–2011, in agreement with decreasing tropical precipitation over this period, together with an increase in biomass burning emissions in 2010 in the Southern Tropics.


2013 ◽  
Vol 26 (2) ◽  
pp. 414-425 ◽  
Author(s):  
Michael J. Foster ◽  
Andrew Heidinger

Abstract Satellite drift is a historical issue affecting the consistency of those few satellite records capable of being used for studies on climate time scales. Here, the authors address this issue for the Pathfinder Atmospheres Extended (PATMOS-x)/Advanced Very High Resolution Radiometer (AVHRR) cloudiness record, which spans three decades and 11 disparate sensors. A two-harmonic sinusoidal function is fit to a mean diurnal cycle of cloudiness derived over the course of the entire AVHRR record. The authors validate this function against measurements from Geostationary Operational Environmental Satellite (GOES) sensors, finding good agreement, and then test the stability of the diurnal cycle over the course of the AVHRR record. It is found that the diurnal cycle is subject to some interannual variability over land but that the differences are somewhat offset when averaged over an entire day. The fit function is used to generate daily averaged time series of ice, water, and total cloudiness over the tropics, where it is found that the diurnal correction affects the magnitude and even the sign of long-term cloudiness trends. A statistical method is applied to determine the minimum length of time required to detect significant trends, and the authors find that only recently have they begun generating satellite records of sufficient length to detect trends in cloudiness.


2021 ◽  
Vol 34 (2) ◽  
pp. 621-633
Author(s):  
Xiaowei Hong ◽  
Riyu Lu ◽  
Shuanglin Li

AbstractThe meridional displacements of the upper-tropospheric westerly jet streams over both West Asia and East Asia (WJMD and EJMD, respectively) in summer manifest as the leading pattern of the zonal wind anomalies over their local domains on the interannual time scale. This study identifies a significant interannual relationship between these two leading patterns, tending to displace in the same meridional direction, either northward or southward. It is shown that the Silk Road pattern, which is a zonal teleconnection pattern along the Asian jet, is an important modulator for the WJMD–EJMD relationship. Another factor is the precipitation anomalies over a broad tropical region, including the Indian subcontinent, the northern Indian Ocean, and the western North Pacific Ocean. Enhanced or suppressed tropical precipitation respectively induces a northward or southward displacement of the primary body of the jet stream from West Asia to East Asia, which contributes to the in-phase WJMD–EJMD relationship, as suggested by both the observations and simple model results. The SST anomalies associated with the tropical precipitation and in-phase WJMD–EJMD relationship are also discussed. The WJMD–EJMD relationship may have an important implication for identifying and explaining the teleconnections of rainfall and temperature over the broad area from West Asia to East Asia, and from the tropics to the extratropics.


1980 ◽  
Vol 1 (2) ◽  
pp. 145-159
Author(s):  
Edward F. Harris ◽  
Nicholas F. Bellantoni

Archaeologically defined inter-group differences in the Northeast subarea ate assessed with a phenetic analysis of published craniometric information. Spatial distinctions in the material culture are in good agreement with those defined by the cranial metrics. The fundamental dichotomy, between the Ontario Iroquois and the eastern grouping of New York and New England, suggests a long-term dissociation between these two groups relative to their ecologic adaptations, trade relationships, trait-list associations, and natural and cultural barriers to gene flow.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2452
Author(s):  
Tian Qiao ◽  
Hussein Hoteit ◽  
Marwan Fahs

Geological carbon storage is an effective method capable of reducing carbon dioxide (CO2) emissions at significant scales. Subsurface reservoirs with sealing caprocks can provide long-term containment for the injected fluid. Nevertheless, CO2 leakage is a major concern. The presence of abandoned wells penetrating the reservoir caprock may cause leakage flow-paths for CO2 to the overburden. Assessment of time-varying leaky wells is a need. In this paper, we propose a new semi-analytical approach based on pressure-transient analysis to model the behavior of CO2 leakage and corresponding pressure distribution within the storage site and the overburden. Current methods assume instantaneous leakage of CO2 occurring with injection, which is not realistic. In this work, we employ the superposition in time and space to solve the diffusivity equation in 2D radial flow to approximate the transient pressure in the reservoirs. Fluid and rock compressibilities are taken into consideration, which allow calculating the breakthrough time and the leakage rate of CO2 to the overburden accurately. We use numerical simulations to verify the proposed time-dependent semi-analytical solution. The results show good agreement in both pressure and leakage rates. Sensitivity analysis is then conducted to assess different CO2 leakage scenarios to the overburden. The developed semi-analytical solution provides a new simple and practical approach to assess the potential of CO2 leakage outside the storage site. This approach is an alternative to numerical methods when detailed simulations are not feasible. Furthermore, the proposed solution can also be used to verify numerical codes, which often exhibit numerical artifacts.


Author(s):  
Jesús F. Águila ◽  
Vanessa Montoya ◽  
Javier Samper ◽  
Luis Montenegro ◽  
Georg Kosakowski ◽  
...  

AbstractSophisticated modeling of the migration of sorbing radionuclides in compacted claystones is needed for supporting the safety analysis of deep geological repositories for radioactive waste, which requires robust modeling tools/codes. Here, a benchmark related to a long term laboratory scale diffusion experiment of cesium, a moderately sorbing radionuclide, through Opalinus clay is presented. The benchmark was performed with the following codes: CORE2DV5, Flotran, COMSOL Multiphysics, OpenGeoSys-GEM, MCOTAC and PHREEQC v.3. The migration setup was solved with two different conceptual models, i) a single-species model by using a look-up table for a cesium sorption isotherm and ii) a multi-species diffusion model including a complex mechanistic cesium sorption model. The calculations were performed for three different cesium boundary concentrations (10−3, 10−5, 10−7 mol / L) to investigate the models/codes capabilities taking into account the nonlinear sorption behavior of cesium. Generally, good agreement for both single- and multi-species benchmark concepts could be achieved, however, some discrepancies have been identified, especially near the boundaries, where code specific spatial (and time) discretization had to be improved to achieve better agreement at the expense of longer computation times. In addition, the benchmark exercise yielded useful information on code performance, setup options, input and output data management, and post processing options. Finally, the comparison of single-species and multi-species model concepts showed that the single-species approach yielded generally earlier breakthrough, because this approach accounts neither for cation exchange of Cs+ with K+ and Na+, nor K+ and Na+ diffusion in the pore water.


2021 ◽  
Vol 255 ◽  
pp. 108933
Author(s):  
Reinmar Seidler ◽  
Richard B. Primack ◽  
Varun R. Goswami ◽  
Sarala Khaling ◽  
M. Soubadra Devy ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mateusz Taszarek ◽  
John T. Allen ◽  
Mattia Marchio ◽  
Harold E. Brooks

AbstractGlobally, thunderstorms are responsible for a significant fraction of rainfall, and in the mid-latitudes often produce extreme weather, including large hail, tornadoes and damaging winds. Despite this importance, how the global frequency of thunderstorms and their accompanying hazards has changed over the past 4 decades remains unclear. Large-scale diagnostics applied to global climate models have suggested that the frequency of thunderstorms and their intensity is likely to increase in the future. Here, we show that according to ERA5 convective available potential energy (CAPE) and convective precipitation (CP) have decreased over the tropics and subtropics with simultaneous increases in 0–6 km wind shear (BS06). Conversely, rawinsonde observations paint a different picture across the mid-latitudes with increasing CAPE and significant decreases to BS06. Differing trends and disagreement between ERA5 and rawinsondes observed over some regions suggest that results should be interpreted with caution, especially for CAPE and CP across tropics where uncertainty is the highest and reliable long-term rawinsonde observations are missing.


Author(s):  
Xiaoyong Xu ◽  
Xianghong Meng ◽  
Shin-ichi Oka

Abstract Objective Our work aimed to investigate the association between vigorous physical activity and visit-to-visit systolic blood pressure variability (BPV). Methods We conducted a post hoc analysis of SPRINT (Systolic Blood Pressure Intervention Trial), a well-characterized cohort of participants randomized to intensive (<120 mmHg) or standard (<140 mmHg) SBP targets. We assessed whether patients with hypertension who habitually engage in vigorous physical activity would have lower visit-to-visit systolic BPV compared with those who do not engage in vigorous physical activity. Visit-to-visit systolic BPV was calculated by standard deviation (SD), average real variability (ARV), and standard deviation independent of the mean (SDIM) using measurements taken during the 1-, 2-, 3-, 6-, 9- and 12-month study visits. A medical history questionnaire assessed vigorous physical activity, which was divided into three categories according to the frequency of vigorous physical activity. Results A total of 7571 participants were eligible for analysis (34.8% female, mean age 67.9±9.3 years). During a follow-up of 1-year, vigorous physical activity could significantly reduce SD, ARV, and SDIM across increasing frequency of vigorous physical activity. There were negative linear trends between frequency of vigorous physical activity and visit-to-visit systolic BPV. Conclusions Long-term engagement in vigorous physical activity was associated with lower visit-to-visit systolic BPV.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Katrina Nilsson-Kerr ◽  
Pallavi Anand ◽  
Philip B. Holden ◽  
Steven C. Clemens ◽  
Melanie J. Leng

AbstractMost of Earth’s rain falls in the tropics, often in highly seasonal monsoon rains, which are thought to be coupled to the inter-hemispheric migrations of the Inter-Tropical Convergence Zone in response to the seasonal cycle of insolation. Yet characterization of tropical rainfall behaviour in the geologic past is poor. Here we combine new and existing hydroclimate records from six large-scale tropical regions with fully independent model-based rainfall reconstructions across the last interval of sustained warmth and ensuing climate cooling between 130 to 70 thousand years ago (Marine Isotope Stage 5). Our data-model approach reveals large-scale heterogeneous rainfall patterns in response to changes in climate. We note pervasive dipole-like tropical precipitation patterns, as well as different loci of precipitation throughout Marine Isotope Stage 5 than recorded in the Holocene. These rainfall patterns cannot be solely attributed to meridional shifts in the Inter-Tropical Convergence Zone.


Sign in / Sign up

Export Citation Format

Share Document