scholarly journals Diagnosis of dust- and haze pollution-impacted PM<sub>10</sub>, PM<sub>2.5</sub>, and PM<sub>1</sub> aerosols observed at Gosan Climate Observatory

2018 ◽  
Author(s):  
Xiaona Shang ◽  
Meehye Lee ◽  
Saehee Lim ◽  
Örjan Gustafsson ◽  
Gangwoong Lee ◽  
...  

Abstract. In East Asia, soil dust is a major component of aerosols and is mixed with various pollutants during transport, resulting in large uncertainty in climate and environmental impact assessment and relevant policymaking. To diagnose the influence of soil dust and anthropogenic pollution on bulk aerosol, we conducted long-term measurements of mass, water-soluble ions, and carbonaceous compounds of PM10, PM2.5, and PM1 at Gosan Climate Observatory, South Korea, from August 2007 to February 2012. The principle component analyses of all measured species reveal that the impact of anthropogenic pollution, soil dust, and agricultural fertilizer accounts for 46 %, 16 %, and 9 % of the total variance, respectively. Particularly, the loadings of agricultural component were high in the warmer months with the least occurrence of high concentration events and have increased over time. In mode analysis of PM10, PM2.5, and PM1 mass concentrations, the mean + σ was comparable to the 90th percentile and thus, suggested as a robust criterion that determines the substantial impact of soil dust and haze pollution on particulate matter. The results of this study imply that non-combustion sources such as soil dust will impose constraints to the reduction of PM2.5 as well as PM10 concentrations. In addition, questions are raised as to whether the yearly average concentration is suitable for environmental standard in northeast Asian region.

1970 ◽  
Vol 32 (1) ◽  
pp. 41-53
Author(s):  
YN Jolly ◽  
A Islam ◽  
SB Quraishi ◽  
AI Mustafa

The impact of various dilutions (2.5, 5, 10, 25 and 50%) of paint industry effluent on physico-chemical properties of soil and the germination, growth and dry matter productions of corn (Zea mays L.) and rice (Oryza sativa L.) have been studied. The effluent was acidic and had low BOD and COD values because of its low content of suspended solid. It contained high concentration of calcium, medium concentrations of nitrogen, sodium, potassium, sulphate, chloride and low concentrations of phosphorus, magnesium and bicarbonate. The trace element like Mn, Ni, Cu, Zn and Pb were measured in the μg L-1 level. On irrigation of soil with the effluent an increase in the water soluble salts, pH, electrical conductivity, cation exchange capacity, nitrogen, phosphorus potassium, sodium, calcium, magnesium and iron contents of the soil for effluent concentrations of 2.5, 5 and 10% were observed but all these parameters were found to decrease on treatment of the soil with the effluent concentration of 25% and above. The effluent of the lower concentrations (2.5, 5 and 10%) enhanced the growth of both crops. However, negative effects on seed germination, dry matter production and the yield of both crops were found for the effluent concentration of 25% and above. doi: 10.3329/jbas.v32i1.2441 Journal of Bangladesh Academy of Sciences, Vol. 32, No. 1, 41-53, 2008


2011 ◽  
Vol 11 (14) ◽  
pp. 7319-7332 ◽  
Author(s):  
C. Deng ◽  
G. Zhuang ◽  
K. Huang ◽  
J. Li ◽  
R. Zhang ◽  
...  

Abstract. PM2.5 and TSP samples were collected at the summit of Mountain Tai (MT) (1534 m a.s.l.) in spring 2006/2007 and summer 2006 to investigate the characteristics of aerosols over central eastern China. For comparison, aerosol samples were also collected at Tazhong, Urumqi, and Tianchi in Xinjiang in northwestern China, Duolun and Yulin in northern China, and two urban sites in the megacities, Beijing and Shanghai, in 2007. Daily mass concentrations of TSP and PM2.5 ranged from 39.6–287.6 μg m−3 and 17.2–235.7 μg m−3 respectively at the summit of MT. Averaged concentrations of PM2.5 showed a pronounced seasonal variation with higher concentration in summer than spring. 17 water-soluble ions (SO42−, NO3−, Cl−, F−, PO43−, NO2−, CH3COO−, CH2C2O42−, C2H4C2O42−, HCOO−, MSA, C2O42−, NH4+, Ca2+, K+, Mg2+, Na+), and 19 elements of all samples were measured. SO42−, NO3−, and NH4+ were the major water-soluble species in PM2.5, accounting for 61.50 % and 72.65 % of the total measured ions in spring and summer, respectively. The average ratio of PM2.5/TSP was 0.37(2006) and 0.49(2007) in spring, while up to 0.91 in summer, suggesting that aerosol particles were primarily comprised of fine particles in summer and of considerable coarse particles in spring. Crustal elements (e.g., Ca, Mg, Al, Fe, etc.) showed higher concentration in spring than summer, while most of the pollution species (SO42−, NO3−, K+, NO2−, NH4+, Cl−, organic acids, Pb, Zn, Cd, and Cr) from local/regional anthropogenic emissions or secondary formation presented higher concentration in summer. The ratio of Ca/Al suggested the impact of Asian dust from the western deserts on the air quality in this region. The high concentration of K+ in PM2.5 (4.41 μg m−3) and its good correlation with black carbon (r = 0.90) and oxalic acid (r = 0.87) suggested the severe pollution from biomass burning, which was proved to be a main source of fine particles over central eastern China in summer. The contribution of biomass burning to the fine particle at MT accounted for 7.56 % in spring and 36.71 % in summer, and even reached to 81.58 % on a day. As and Pb were two of the most enriched elements. The long-range transport of aerosols spread the heavy pollution from coal-mining/coal-ash to everywhere over China. Anthropogenic air-pollution was evidently rather severe at MT, though it has been declared by UNESCO to be a World Heritage site.


2015 ◽  
Vol 15 (4) ◽  
pp. 2167-2184 ◽  
Author(s):  
S. F. Kong ◽  
L. Li ◽  
X. X. Li ◽  
Y. Yin ◽  
K. Chen ◽  
...  

Abstract. To understand the impact of firework-burning (FW) particles on air quality and human health during the winter haze period, 39 elements, 10 water-soluble ions and 8 fractions of carbonaceous species in atmospheric PM2.5 in Nanjing were investigated during the 2014 Chinese Spring Festival (SF). Serious regional haze pollution persisted throughout the entire sampling period, with PM2.5 averaging at 113 ± 69 μg m−3 and visibility at 4.8 ± 3.2 km. The holiday effect led to almost all the chemical species decreasing during the SF, except for Al, K, Ba and Sr which were related to FW. The source contributions of coal combustion, vehicle emission and road dust decreased dramatically, whereas FW contributed to about half of the PM2.5 during the SF period. The intensive emission of FW particles on New Year's Eve accounted for 60.1% of the PM2.5. Fireworks also obviously modified the chemical compositions of PM2.5, with 39.3% contributed by increased organic matter, followed by steadily increased loadings of secondary inorganic ions. The aging processes of the FW particles lasted for about 4 days reflected by the variations of Ba, Sr, NH4+, NO3−, SO42− and K+, characterized by heterogeneous reactions of SO2 and NOx on crustal materials directly from FW, the replacement of Cl− by NO3− and SO42−, coating of NO3− and SO42− on soot, formation of secondary organic aerosols and metal-catalyzed formation of NO3− and SO42− at higher relative humidity. During aging, the main contributors to the extinction coefficient shifted from elemental carbon and organic matter to ammonium sulfate. The particles raised higher cancer risk of 1.62 × 10−6 by heavy metals (especially for Cd and As). This study provided detailed composition data and first comprehensive analysis of the aging processes of FW particles during the serious haze pollution period and their potential impact on human health.


2010 ◽  
Vol 10 (9) ◽  
pp. 20975-21021 ◽  
Author(s):  
C. Deng ◽  
G. Zhuang ◽  
K. Huang ◽  
J. Li ◽  
R. Zhang ◽  
...  

Abstract. PM2.5 and TSP samples were collected at the summit of Mountain Tai (MT) (1534 m a.s.l.) in spring 2006/2007 and summer 2006 to investigate the characteristics of aerosols over central eastern China. For comparison, aerosol samples were also collected at Tazhong, Urumqi, Tianchi in Xinjiang in northwestern China, Duolun and Yulin in northern China, and two urban sites in the megacities, Beijing and Shanghai, in spring 2007. Daily mass concentrations of TSP and PM2.5 ranged from 39.6–276.9 μg/m3 and 17.2–235.7 μg/m3 respectively at the summit of MT. Averaged concentrations of PM2.5 showed a pronounced seasonal variation with higher concentration in summer than spring. 17 water-soluble ions (SO42−, NO3−, Cl−, F−, PO43−, NO2−, CH3COO−, CH2C2O42−, C2H4C2O42−, HCOO−, MSA, C2O42−, NH4+, Ca2+, K+, Mg2+, Na+), and 19 elements of 176 samples from MT were measured. SO42−, NO3−, and NH4+ were the major water-soluble species in PM2.5, accounting for 61.5% and 73.8% of the total measured ions in spring and summer, respectively. The average ratio of PM2.5/TSP was 0.37(2006) and 0.49(2007) in spring, while up to 0.91 in summer, suggesting that aerosol particles were primarily comprised of fine particles in summer and of considerable coarse particles in spring. Crustal elements (e.g., Ca, Mg, Al, Fe, etc.) showed higher concentration in spring than summer, while most pollution species (SO42−, NO3−, K+, NO2−, NH4+, Cl−, organic acids, Pb, Zn, Cd, and Cr) from local/regional anthropogenic emissions and secondary formation presented higher concentration in summer. The ratio of Ca/Al and back trajectories of air mass suggested the impact of Asian dust from Gobi and deserts on the air quality in this region. The high concentration of K+ in aerosols (4.56 μg/m3) and its good correlation with black carbon (r = 0.90), oxalic acid (r = 0.87), and Cl− (r = 0.71) were due to the severe pollution from biomass burning, which was proved to be a main source of fine particles over central eastern China in summer. Biomass burning contributed 36.71% of PM2.5 in mass in summer. As and Pb were two of the most enriched elements, especially in spring both for TSP and PM2.5, which revealed that the long-range transport of aerosols spread the heavy pollution from coal burning everywhere over China. Anthropogenic aerosols at MT were evidently rather severe at MT, though it has been declared by UNESCO to be a World Heritage site.


2014 ◽  
Vol 14 (21) ◽  
pp. 28609-28655 ◽  
Author(s):  
S. Kong ◽  
L. Li ◽  
X. Li ◽  
Y. Yin ◽  
K. Chen ◽  
...  

Abstract. To understand the impact of fireworks burning (FW) particles on air quality and human health during winter haze period, thirty-nine elements, ten water-soluble ions and eight fractions of carbonaceous species in atmospheric PM2.5 at Nanjing were investigated during 2014 Chinese Spring Festival (SF). Serious regional haze pollution persisted throughout the entire sampling period, PM2.5 averaging at 113 ± 69 μg m−3 and visibility at 4.8 ± 3.2 km. The holiday effect led to almost all the chemical species decreasing during the SF, except for Al, K, Ba and Sr which were related to FW. The source contributions of coal combustion, vehicle emission and road dust descreased dramatically, whereas FW contributed to about half of the PM2.5 during SF period. The intensive emission of FW particles at New Year's Eve accounted for 60.1% of the PM2.5. They also significnatly modified the chemical compositions of PM2.5, with 39.3% contributed by increased organic matter, followed by steadly increased loadings of secondary inorganic ions. The aging processes of the FW particles lasted for at least six days reflected by the variation of SO42−, characterized by heterogeneous reactions of SO2 and NOx on crustal materials directly from FW, the replacement of Cl− by NO3− and SO42− coating of NO3− and SO42− on soot, formation of secondary organic aerosols and metal-catalyzed formation of NO3− and SO42− at higher relative humidity. During aging, the main contributors to the extinction coefficient shifted from elemental carbon and organic matter to sulfate ammonium. The particles raised higher cancer risks by heavy metals (especially for Cd and As) as 1.62 ×10−6. This study provided detailed composition data and first comprehensive analysis of the aging processes of FW particles at serious haze pollution period and their potential impact on human health.


Atmosphere ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 310
Author(s):  
Hee-Jung Ko ◽  
Seung Joo Song ◽  
Jeong Eun Kim ◽  
Jung-Min Song ◽  
Joo Wan Cha

This study focuses on the temporal variation in the compositional characteristics of atmospheric aerosols in Seoul, South Korea, during the consecutive high aerosol concentration episode from 30 December 2013 to 2 January 2014. The temporal variations in the observed physical, optical, and chemical properties show that there were three distinct episodes during the period: haze, mixed haze/Asian dust, and Asian dust episodes. For the haze period, the concentration of secondary inorganic aerosols increased and both secondary inorganic aerosols and calcium species exhibited simultaneously high concentrations during the mixed haze/Asian dust period. The neutralization factors by ammonia in the haze periods were higher as 1.03 than the other periods, meanwhile the neutralization contribution by calcium carbonate was relatively higher as 1.39 during the Asian dust episode. The backward trajectory analysis showed that concentrations of SO42−, NO3−, and NH4+ were relatively high when air masses moved over East China. Principal component analysis showed that water-soluble components originated from soil dust/incineration, secondary aerosols/biomass burning, and road dust from the haze aerosol. For the mixed haze/Asian dust episode, the major source of aerosols was estimated to have originated from soil dust, pollutants from fossil fuel combustion, biomass burning, and sea-salt emissions. Furthermore, the main sources of ionic species in the Asian dust aerosols were estimated to be sea-salt/soil dust, secondary aerosols/coal combustion, and road dust.


2015 ◽  
Vol 15 (22) ◽  
pp. 33407-33443 ◽  
Author(s):  
M. Tian ◽  
H. B. Wang ◽  
Y. Chen ◽  
F. M. Yang ◽  
X. H. Zhang ◽  
...  

Abstract. A comprehensive measurement was carried out to analyze the heavy haze events in Suzhou in January 2013 when extremely severe haze pollution occurred in many cities in China especially in the East. Hourly concentrations of PM2.5, chemical composition (including water-soluble inorganic ions, OC, and EC), and gas-phase precursors were obtained via on-line monitoring system. Based on these data, detailed aerosol composition, light extinction and gas-phase precursors were analyzed to understand the characteristics of the haze events, moreover, the formation mechanism of nitrate and sulfate in PM2.5 and the regional sources deduced from trajectory and PSCF were discussed to explore the origin of the heavy aerosol pollution. The results showed that frequent haze events were occurred on January 2013 and the concentrations of PM2.5 often exceeded 150 μg m-3 during the haze occurrence, with a maximum concentration of 324 μg m-3 on 14 January 2013. Unfavorable weather conditions (high RH, and low rainfall, wind speed and atmospheric pressure), high concentration of secondary aerosol species (including SO42-, NO3-, NH4+, and SOC) and precursors were observed during the haze events. Additionally, OM, (NH4)2SO4, NH4NO3 were demonstrated to be the major contributors to the visibility impairment but the share differed from haze events. This study also found that the high concentration of sulfate might be explained by the heterogeneous reactions in the aqueous surface layer of pre-existing particles or in cloud processes while nitrate might be mainly formed through homogeneous gas-phase reactions. The results of trajectory clustering and the PSCF method manifested that aerosol pollutions in the studied areas were mainly affected by local activities and surrounding sources transported from nearby cities.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Naifu Cao ◽  
Yuntao Liang ◽  
Gang Wang

In order to reveal the impact of a high concentration of CO2 on the soil in the coal mining subsidence area, the surface above the goaf before CO2 injection is regarded as a subsidence area model. Based on the actual vertical depth of 70∼80 m shallow buried coal seam geological conditions, CO2 diffusion in the goaf is regarded as a short-term high-concentration CO2 leakage model. The surface soil samples before and after 60 tons of direct injection of liquid CO2 in the goaf of Huojitujing in the Daliuta Coal Mine could be collected to conduct the experimental observation. By measuring the changes in the five indicators of soil air-dried and fresh sample including pH, available nitrogen, available potassium, water-soluble salt, and total organic carbon, the changes of pH and mineral content in the soil could be analyzed quantitatively and qualitatively at different time periods before and after CO2 injection. This proves that the injection of CO2 into the goaf has an impact on the chemical properties of the surrounding soil.


2010 ◽  
Vol 80 (45) ◽  
pp. 319-329 ◽  
Author(s):  
Allyson A. West ◽  
Marie A. Caudill

Folate and choline are water-soluble micronutrients that serve as methyl donors in the conversion of homocysteine to methionine. Inadequacy of these nutrients can disturb one-carbon metabolism as evidenced by alterations in circulating folate and/or plasma homocysteine. Among common genetic variants that reside in genes regulating folate absorptive and metabolic processes, homozygosity for the MTHFR 677C > T variant has consistently been shown to have robust effects on status markers. This paper will review the impact of genetic variants in folate-metabolizing genes on folate and choline bioefficacy. Nutrient-gene and gene-gene interactions will be considered along with the need to account for these genetic variants when updating dietary folate and choline recommendations.


10.28945/2926 ◽  
2005 ◽  
Author(s):  
James N. Morgan ◽  
Craig A. VanLengen

The divide between those who have computer and Internet access and those who do not appears to be narrowing, however overall statistics may be misleading. Measures of computer availability in schools often include cases where computers are only available for administration or are available only on a very limited basis (Gootman, 2004). Access to a computer and the Internet outside of school helps to reinforce student learning and emphasize the importance of using technology. Recent U.S. statistics indicate that ethnic background and other demographic characteristics still have substantial impact on the availability and use of computers by students outside of the classroom. This paper examines recent census data to determine the impact of the household on student computer use outside of the classroom. Encouragingly, the findings of this study suggest that use of a computer at school substantially increases the chance that a student will use a computer outside of class. Additionally, this study suggests that computer use outside of the classroom is positively and significantly impacted by being in a household with adults who either use a computer at work or work in an industry where computers are extensively used.


Sign in / Sign up

Export Citation Format

Share Document