scholarly journals Two mega sand and dust storm events over northern China in March 2021: transport processes, historical ranking and meteorological drivers

2021 ◽  
Author(s):  
Ke Gui ◽  
Wenrui Yao ◽  
Huizheng Che ◽  
Linchang An ◽  
Yu Zheng ◽  
...  

Abstract. Although a remarkable reduction in the frequency of sand and dust storms (SDSs) in the past several decades has been reported over northern China (NC), two unexpected mega SDSs occurred on March 15–20, 2021 and March 27–29, 2021 (abbreviated as the “3.15” and “3.27” SDS events), which has reawakened widespread concern. This study characterizes the origins, transport processes, magnitudes of impact, and meteorological causes of these two SDS events using a long-term (2000–2021) dust optical depth (DOD) dataset retrieved from MODIS measurements and a comprehensive set of multiple satellite and ground-based observations combined with atmospheric reanalysis data. During the 3.15/3.27 event, the invasion of dust plumes greatly degraded the air quality over large areas of NC, reaching extremely hazardous levels, with the maximum daily mean PM10 concentration of 7058 µg m−3 (2670 µg m−3) recorded on March 15 (28). CALIOP observations show that during the 3.15 event the dust plume was lifted to an altitude of 4–8 km, and its range of impact extended from the dust source to the eastern coast of China. In contrast, the lifting height of the dust plume during the 3.27 event was lower than that during 3.15 event, which was also confirmed by ground-based Lidar observations. The MODIS-retrieved DOD data registered these two massive SDS events as the most intense episode in the same period in history over the past two decades. These two extreme SDS events were associated with both atmospheric circulation extremes and local meteorological anomalies that favored enhanced dust emissions in the Gobi Desert (GD) across southern Mongolia and NC. Meteorological analysis revealed that both SDS events were triggered by an exceptionally strong Mongolian cyclone generated at nearly the same location (along the central and eastern plateau of Inner Mongolia) in conjunction with a surface-level cold high-pressure system at the rear, albeit with differences in magnitude and spatial extent of impact. In the GD, the early melting of spring snow caused by near-surface temperature anomalies over dust source regions, together with negative soil moisture anomalies induced by decreased precipitation, formed drier and barer soil surfaces, which allowed for increased emissions of dust into the atmosphere by strongly enhanced surface winds generated by the Mongolian cyclone.

2018 ◽  
Vol 10 (12) ◽  
pp. 1993 ◽  
Author(s):  
Sarah Albugami ◽  
Steven Palmer ◽  
Jeroen Meersmans ◽  
Toby Waine

Sand and dust storm events (SDEs), which result from strong surface winds in arid and semi-arid areas, exhibiting loose dry soil surfaces are detrimental to human health, agricultural land, infrastructure, and transport. The accurate detection of near-surface dust is crucial for quantifying the spatial and temporal occurrence of SDEs globally. The Arabian Peninsula is an important source region for global dust due to the presence of extensive deserts. This paper evaluates the suitability of five different MODIS-based methods for detecting airborne dust over the Arabian Peninsula: (a) Normalized Difference Dust Index (NDDI); (b) Brightness Temperature Difference (BTD) (31–32); (c) BTD (20–31); (d) Middle East Dust Index (MEDI) and (e) Reflective Solar Band (RSB). We derive detection thresholds for each index by comparing observed values for ‘dust-present’ versus ‘dust-free’ conditions, taking into account various land cover settings and analyzing associated temporal trends. Our results suggest that the BTD (31–32) method and the RSB index are the most suitable indices for detecting dust storms over different land-cover types across the Arabian Peninsula. The NDDI and BTD (20–31) methods have limitations in identifying dust over multiple land-cover types. Furthermore, the MEDI has been found to be unsuitable for detecting dust in the study area across all land-cover types.


2018 ◽  
Author(s):  
Lu She ◽  
Yong Xue ◽  
Jie Guang ◽  
Yahui Che ◽  
Cheng Fan ◽  
...  

Abstract. The deserts in East Asia are one of the most influential mineral dust source regions in the world. Large amounts of dust particles are emitted and transported to distant regions. A super dust storm characterized by long-distance transport occurred over the Pan-Eurasian Experiment (PEEX) area in early May 2017. In this study, multi-satellite/sensor observations and ground-based measurements combined with the HYbrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model were used to analyse the dynamical processes of the origin and transport of the strong dust storm. The optical and microphysical properties of the dust particles were analysed using Aerosol Robotic Network (AERONET) measurements. From the multi-satellite observations, the dust storms were suggested to have originated from the Gobi Desert on the morning of 3 May 2017, and it transported dust northeastward to the Bering Sea, eastward to the Korean Peninsula and Japan, and southward to southern Central China. The air quality in China drastically deteriorated as a result of this heavy dust storm; the PM10 (particulate matter less than 10 mm in aerodynamic diameter) concentrations measured at some air quality stations located in northern China reached 4000 μg/m3. During the dust event, the maximum AOD values reached 3, 2.3, 2.8, and 0.65 with sharp drops in the extinction Ångström exponent (EAE) to 0.023, 0.068, 0.03, and 0.097 at AOE_Baotou, Beijing, Xuzhou-CUMT, and Ussuriysk, respectively. The dust storm introduced great variations in the aerosol property, causing totally different spectral single-scattering albedo (SSA) and volume size distribution (VSD). The combined observations revealed comprehensive information about the dynamic transport of dust and the dust affected regions, and the effect of dust storms on the aerosol properties.


2007 ◽  
Vol 7 (1) ◽  
pp. 2133-2168
Author(s):  
G. Fratini ◽  
P. Ciccioli ◽  
A. Febo ◽  
A. Forgione ◽  
R. Valentini

Abstract. Mineral dust emission accounts for a substantial portion of particles present in the troposphere. It is emitted most from desert areas, mainly through intense storm episodes. The aim of this work was to quantify size-segregated fluxes of mineral dust particles emitted during storm events occurring in desert areas of northern China (Alashan desert, Inner Mongolia), known to act as one of the strongest sources of mineral dust particles in the Asian continent. Long-range transport of mineral dust emitted in this area is responsible for the high particle concentrations reached in densely populated areas, including the city of Beijing. Based on a theoretical analysis, an eddy covariance system was built to get size-segregated fluxes of mineral dust particles with optical diameters ranging between 0.26 and 7.00 μm. The system was optimised to measure fluxes under intense storm event conditions. It was tested in two sites located in the Chinese portion of the Gobi desert. During the field campaign, an intense storm event was recorded in one of them. Data obtained during this event indicate that particle number fluxes were dominated by the finer fraction, whereas in terms of volume, coarser particle accounted for the largest portion. It was found that during the storm event, ratios of size-segregated particle volume fluxes remained substantially constant and a simple parameterization of particle emission from total volume fluxes was possible. A strong correlation was also found between particle volume fluxes and the friction velocity. This relationship is extremely useful to investigate mechanisms of particle formation by wind erosion.


2019 ◽  
Vol 99 ◽  
pp. 01004
Author(s):  
Kenji Kai ◽  
Yuki Minamoto ◽  
Kotaro Nakamura ◽  
Minrui Wang ◽  
Kei Kawai ◽  
...  

A large-scale dust event occurred in East Asia during early May 2017, and transported dust was measured all over Japan. We performed an analysis of the entire dust event using multiple sources: a local ceilometer measurement, measurements from an optical particle counter in the Gobi Desert (Dalanzadgad, Mongolia), a study of Dust RGB imagery obtained from Himawari-8, lidar measurements from Japan, and meteorological data. Our results show that three extratropical low pressure systems occurred consecutively in Mongolia and generated dust storms in the Gobi Desert. Remarkably, the Dust RGB imagery shows both the occurrence and the transportation of the dust, and was able to detect two dust outbreaks in the Horqin Sandy Land of Northern China and their transportation to eastern Japan; this shows that the Horqin Sandy Land was one of the source regions of this dust event.


Author(s):  
D.I. Potter ◽  
M. Ahmed ◽  
K. Ruffing

Ion implantation, used extensively for the past decade in fabricating semiconductor devices, now provides a unique means for altering the near-surface chemical compositions and microstructures of metals. These alterations often significantly improve physical properties that depend on the surface of the material; for example, catalysis, corrosion, oxidation, hardness, friction and wear. Frequently the mechanisms causing these beneficial alterations and property changes remain obscure and much of the current research in the area of ion implantation metallurgy is aimed at identifying such mechanisms. Investigators thus confront two immediate questions: To what extent is the chemical composition changed by implantation? What is the resulting microstructure? These two questions can be investigated very fruitfully with analytical electron microscopy (AEM), as described below.


Shore & Beach ◽  
2019 ◽  
pp. 35-45
Author(s):  
Patrick Barrineau ◽  
Timothy Kana

Hurricane Matthew (2016) caused significant beach and dune erosion from Cape Hatteras, North Carolina, USA, to Cape Canaveral, Florida, USA. At Myrtle Beach, South Carolina, the storm caused beach recession, and much of the southern half of the city’s beaches appeared to be overwashed in post-storm surveys. Around half of the city’s beaches appeared overwashed following the storm; however, the Storm Impact Scale (SIS; Sallenger 2000) applied to a pre-storm elevation model suggests less than 10% of the city’s beaches should have experienced overwash. Spatial analysis of elevation and land cover data reveals dunes that were “overwashed” during Matthew drain from watersheds that are >35% impervious, where those showing only dune recession are <5% impervious. The densely developed downtown of Myrtle Beach sits on a low seaward-sloping terrace. Additionally, indurated strata beneath the downtown area can prevent groundwater from draining during excessive rain events. As a result, the most continuous impervious surface cover and near-surface strata lie within a half-kilometer of the beach and drain directly to the backshore. Along the U.S. Southeast coast, this is somewhat rare; many coastal systems feature a lagoon or low-lying bottomland along their landward border, which facilitates drainage of upland impervious surfaces following storm passage. At Myrtle Beach, all of the stormwater runoff is drained directly to the beach through a series of outfall pipes. Many of the outfall pipes are located along the backshore, near the elevation of storm surge during Matthew. Runoff from Matthew’s heavy rains was observed causing ponding on the landward side of the foredune and scouring around beach access walkways. Based on these observations, the severe dune erosion experienced near downtown Myrtle Beach during Hurricane Matthew may have been caused by runoff and/or groundwater flux rather than overwash. These results highlight an unexpected relationship between upland conditions and dune erosion on a developed shoreline. That is, dune erosion can be caused by mechanisms beside overwash during storm events.


2020 ◽  
Vol 4 ◽  
pp. 78-95
Author(s):  
A.R. Ivanova ◽  
◽  
E.N. Skriptunova ◽  
N.I. Komasko ◽  
A.A. Zavialova ◽  
...  

A review of literature on the impact of dust and sand storms on the air transport operation is presented. Observational data on dust storms at the aerodromes of European Russia for the period of 2001-2019 are analyzed. The seasonal variations in dust transport episodes at aerodromes and its relationship with visibility changes are discussed. The characteristics of dusty air masses and advection are given. It is concluded that the frequency of dust transfer episodes for the aerodromes under study has decreased over the past five years, except for Gumrak aerodrome (Volgograd). Keywords: dust storm, sand storm, aviation, visibility, seasonal variations, aerodrome оf European Russia


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 141
Author(s):  
Emilie Aragnou ◽  
Sean Watt ◽  
Hiep Nguyen Duc ◽  
Cassandra Cheeseman ◽  
Matthew Riley ◽  
...  

Dust storms originating from Central Australia and western New South Wales frequently cause high particle concentrations at many sites across New South Wales, both inland and along the coast. This study focussed on a dust storm event in February 2019 which affected air quality across the state as detected at many ambient monitoring stations in the Department of Planning, Industry and Environment (DPIE) air quality monitoring network. The WRF-Chem (Weather Research and Forecast Model—Chemistry) model is used to study the formation, dispersion and transport of dust across the state of New South Wales (NSW, Australia). Wildfires also happened in northern NSW at the same time of the dust storm in February 2019, and their emissions are taken into account in the WRF-Chem model by using Fire Inventory from NCAR (FINN) as emission input. The model performance is evaluated and is shown to predict fairly accurate the PM2.5 and PM10 concentration as compared to observation. The predicted PM2.5 concentration over New South Wales during 5 days from 11 to 15 February 2019 is then used to estimate the impact of the February 2019 dust storm event on three health endpoints, namely mortality, respiratory and cardiac disease hospitalisation rates. The results show that even though as the daily average of PM2.5 over some parts of the state, especially in western and north western NSW near the centre of the dust storm and wild fires, are very high (over 900 µg/m3), the population exposure is low due to the sparse population. Generally, the health impact is similar in order of magnitude to that caused by biomass burning events from wildfires or from hazardous reduction burnings (HRBs) near populous centres such as in Sydney in May 2016. One notable difference is the higher respiratory disease hospitalisation for this dust event (161) compared to the fire event (24).


2007 ◽  
Vol 131-133 ◽  
pp. 425-430 ◽  
Author(s):  
Anis M. Saad ◽  
Oleg Velichko ◽  
Yu P. Shaman ◽  
Adam Barcz ◽  
Andrzej Misiuk ◽  
...  

The silicon substrates were hydrogenated at approximately room temperature and hydrogen concentration profiles vs. depth have been measured by SIMS. Czochralski grown (CZ) wafers, both n- and p-type conductivity, were used in the experiments under consideration. For analysis of hydrogen transport processes and quasichemical reactions the model of hydrogen atoms diffusion and quasichemical reactions is proposed and the set of equations is obtained. The developed model takes into account the formation of bound hydrogen in the near surface region, hydrogen transport as a result of diffusion of hydrogen molecules 2 H , diffusion of metastable complexes * 2 H and diffusion of nonequilibrium hydrogen atoms. Interaction of 2 H with oxygen atoms and formation of immobile complexes “oxygen atom - hydrogen molecule” (O - H2 ) is also taken into account to explain the hydrogen concentration profiles in the substrates of n-type conductivity. The computer simulation based on the proposed equations has shown a good agreement of the calculated hydrogen profiles with the experimental data and has allowed receiving a value of the hydrogen molecules diffusivity at room temperature.


Sign in / Sign up

Export Citation Format

Share Document