scholarly journals Relation between weather radar equation and first-order backscattering theory

2003 ◽  
Vol 3 (3) ◽  
pp. 813-821 ◽  
Author(s):  
F. S. Marzano ◽  
G. Ferrauto

Abstract. Aim of this work is to provide a new insight into the physical basis of the meteorological-radar theory in attenuating media. Starting form the general integral form of the weather radar equation, a modified form of the classical weather radar equation at attenuating wavelength is derived. This modified radar equation includes a new parameter, called the range-bin extinction factor, taking into account the rainfall path attenuation within each range bin. It is shown that, only in the case of low-to-moderate attenuating media, the classical radar equation at attenuating wavelength can be used. These theoretical results are corroborated by using the radiative transfer theory where multiple scattering phenomena can be quantified. From a new definition of the radar reflectivity, in terms of backscattered specific intensity, a generalised radar equation is deduced. Within the assumption of first-order backscattering, the generalised radar equation is reduced to the modified radar equation, previously obtained. This analysis supports the conclusion that the description of radar observations at attenuating wavelength should include, in principle, first-order scattering effects. Numerical simulations are performed by using statistical relationships among the radar reflectivity, rain rate and specific attenuation, derived from literature. Results confirm that the effect of the range-bin extinction factor, depending on the considered frequency and range resolution, can be significant at X band for intense rain, while at Ka band and above it can become appreciable even for moderate rain. A discussion on the impact of these theoretical and numerical results is finally included.


2003 ◽  
Vol 3 (1) ◽  
pp. 301-322
Author(s):  
F. S. Marzano ◽  
G. Ferrauto

Abstract. Aim of this work is to provide a new insight into the physical basis of the meteorological-radar theory in attenuating media. Starting form the general integral form of the weather radar equation, a modified form of the classical weather radar equation at attenuating wavelength is derived. This modified radar equation includes a new parameter, called the range-bin extinction factor, taking into account the rainfall path attenuation within each range bin. It is shown that, only in the case of low-to-moderate attenuating media, the classical radar equation at attenuating wavelength can be used. These theoretical results are corroborated by using the radiative transfer theory where multiple scattering phenomena can be quantified. From a new definition of the radar reflectivity, in terms of backscattered specific intensity, a generalised radar equation is deduced. Within the assumption of first-order backscattering, the generalised radar equation is reduced to the modified radar equation, previously obtained. This analysis supports the conclusion that the description of radar observations at attenuating wavelength should include, in principle, first-order scattering effects. Numerical simulations are performed by using statistical relationships among the radar reflectivity, rain rate and specific attenuation, derived from literature. Results confirm that the effect of the range-bin extinction factor, depending on the considered frequency and range resolution, can be significant at X band for intense rain, while at Ka band and above it can become appreciable even for moderate rain. A discussion on the impact of these theoretical and numerical results is finally included.



2021 ◽  
Vol 13 (11) ◽  
pp. 2103
Author(s):  
Yuchen Liu ◽  
Jia Liu ◽  
Chuanzhe Li ◽  
Fuliang Yu ◽  
Wei Wang

An attempt was made to evaluate the impact of assimilating Doppler Weather Radar (DWR) reflectivity together with Global Telecommunication System (GTS) data in the three-dimensional variational data assimilation (3DVAR) system of the Weather Research Forecast (WRF) model on rain storm prediction in Daqinghe basin of northern China. The aim of this study was to explore the potential effects of data assimilation frequency and to evaluate the outputs from different domain resolutions in improving the meso-scale NWP rainfall products. In this study, four numerical experiments (no assimilation, 1 and 6 h assimilation time interval with DWR and GTS at 1 km horizontal resolution, 6 h assimilation time interval with radar reflectivity, and GTS data at 3 km horizontal resolution) are carried out to evaluate the impact of data assimilation on prediction of convective rain storms. The results show that the assimilation of radar reflectivity and GTS data collectively enhanced the performance of the WRF-3DVAR system over the Beijing-Tianjin-Hebei region of northern China. It is indicated by the experimental results that the rapid update assimilation has a positive impact on the prediction of the location, tendency, and development of rain storms associated with the study area. In order to explore the influence of data assimilation in the outer domain on the output of the inner domain, the rainfall outputs of 3 and 1 km resolution are compared. The results show that the data assimilation in the outer domain has a positive effect on the output of the inner domain. Since the 3DVAR system is able to analyze certain small-scale and convective-scale features through the incorporation of radar observations, hourly assimilation time interval does not always significantly improve precipitation forecasts because of the inaccurate radar reflectivity observations. Therefore, before data assimilation, the validity of assimilation data should be judged as far as possible in advance, which can not only improve the prediction accuracy, but also improve the assimilation efficiency.



2014 ◽  
Vol 986-987 ◽  
pp. 377-382 ◽  
Author(s):  
Hui Min Gao ◽  
Jian Min Zhang ◽  
Chen Xi Wu

Heuristic methods by first order sensitivity analysis are often used to determine location of capacitors of distribution power system. The selected nodes by first order sensitivity analysis often have virtual high by first order sensitivities, which could not obtain the optimal results. This paper presents an effective method to optimally determine the location and capacities of capacitors of distribution systems, based on an innovative approach by the second order sensitivity analysis and hierarchical clustering. The approach determines the location by the second order sensitivity analysis. Comparing with the traditional method, the new method considers the nonlinear factor of power flow equation and the impact of the latter selected compensation nodes on the previously selected compensation location. This method is tested on a 28-bus distribution system. Digital simulation results show that the reactive power optimization plan with the proposed method is more economic while maintaining the same level of effectiveness.



Author(s):  
Yuanbo Ran ◽  
Haijiang Wang ◽  
Li Tian ◽  
Jiang Wu ◽  
Xiaohong Li

AbstractPrecipitation clouds are visible aggregates of hydrometeor in the air that floating in the atmosphere after condensation, which can be divided into stratiform cloud and convective cloud. Different precipitation clouds often accompany different precipitation processes. Accurate identification of precipitation clouds is significant for the prediction of severe precipitation processes. Traditional identification methods mostly depend on the differences of radar reflectivity distribution morphology between stratiform and convective precipitation clouds in three-dimensional space. However, all of them have a common shortcoming that the radial velocity data detected by Doppler Weather Radar has not been applied to the identification of precipitation clouds because it is insensitive to the convective movement in the vertical direction. This paper proposes a new method for precipitation clouds identification based on deep learning algorithm, which is according the distribution morphology of multiple radar data. It mainly includes three parts, which are Constant Altitude Plan Position Indicator data (CAPPI) interpolation for radar reflectivity, Radial projection of the ground horizontal wind field by using radial velocity data, and the precipitation clouds identification based on Faster-RCNN. The testing result shows that the method proposed in this paper performs better than the traditional methods in terms of precision. Moreover, this method boasts great advantages in running time and adaptive ability.



Author(s):  
Bjorn Van Campenhout ◽  
Karl Pauw ◽  
Nicholas Minot


2018 ◽  
Vol 156 ◽  
pp. 02012 ◽  
Author(s):  
Mardiah ◽  
Rif’an Fathoni ◽  
Pratiwi Pudyaningtyas ◽  
Hamdania Gamu ◽  
Rinaldy

High Consumption of paper, bring the impact of the waste paper itself. And the utilization of the paper is limited to recycled products and crafts, whereas paper such as newspaper still contains cellulose that can be potential to be used as a heavy metal adsorbent. In this study, newspaper was dissolved in sodium bicarbonate to reduce various impurities and then was reacted with citric acid (CA). The modified adsorbent was characterized by FTIR and was tested for adsorb Cu(II) in artificial solution. After adsorption process, the solution was filtered and analysed using Atomic Absorption Spectrophotometer (AAS). The adsorption experimental data was fitted to Langmuir, Freundlich, Tempkin, and Dubinin-Radushkevich for equilibrium model and was fitted to pseudo first order reaction and pseudo second order reaction for kinetic studies. The result showed that CA-modification newspaper able to remove heavy metals Cu(II) in solution.



2020 ◽  
pp. 92-104
Author(s):  
Nattapon Mahavik ◽  
Sarintip Tantanee

The weather radar is one of the tools that can provide spatio-temporal information for nowcast which is useful for hydro-meteorological disasters warning and mitigation system. The ground-based weather radar can provide spatial and temporal information to monitor severe storm over the risky area. However, the usage of multiple radars can provide more effective information over large study area where single radar beam may be blocked by surrounding terrain Even though, the investigation of the sever storm physical characteristics needs the information from multiple radars, the mosaicked radar product has not been available for Thai researcher yet. In this study, algorithm of mosaicked radar reflectivity has been developed by using data from ground-based radar of Thai Meteorological Department over the Chao Phraya river basin in the middle of Thailand. The Python script associated with OpenCV and Wradlib libraries were used in our investigations of the mosaicking processes. The radar quality index (RQI) field has been developed by implementing an equation of a quality radar index to identify the reliability of each mosaicked radar reflectivity pixels. First, the percentage of beam blockage is computed to understand the radar beam propagation obstructed by surrounding topography in order to clarify the limitations of the observed beam on producing radar reflectivity maps. Second, the elevation of beam propagation associated with distance field has been computed. Then, these three parameters and the obtained percentage of beam blockage are utilized as the parameters in the equation of RQI. Finally, the detected radar flare, non-precipitating radar area, has been included to the RQI field. Then, the RQI field has been applied to the extracted radar reflectivity to evaluate the quality of mosaicked radar reflectivity to inform end user in any application fields over the Chao Phraya river basin.



1974 ◽  
Vol 31 (11) ◽  
pp. 1723-1729 ◽  
Author(s):  
D. P. Scott

Studies of large (about 125) samples of walleye (Stizostedion vitreum), northern pike (Esox lucius), white sucker (Catostomus commersoni), and lake whitefish (Coregonus clupeaformis) from each of four areas of Clay Lake, Ontario, a highly mercury-contaminated lake, have confirmed previous findings that the larger the fish, the greater the white muscle mercury concentration, within species, within populations. This relationship was statistically broken into separate age:concentration and growth:concentration partial regressions; older fish and faster growing fish were generally more contaminated, subject to the above species–area restrictions. However, the generally positive correlation between concentration and condition (as measured by relative heaviness of individuals within area–species samples) found in the previous study is here contradicted; relatively heavier fish tended to have lower Hg concentrations. Despite the relatively small size of the lake (about 11 × 2 km) analyses of multiple covariance indicated profound within-species differences between the samples from the four areas. However, there did not appear to be any obvious correlation between these differences and sediment mercury values.The various statistical relationships do not appear to be simple, first-order regressions; rather, there appear to be significant interactions between age and growth, and age and condition, which tend to change the partial slopes with age. The four species were distinctly different in most of their relationships.



2008 ◽  
Vol 147 (3) ◽  
pp. 225-240 ◽  
Author(s):  
M. S. DHANOA ◽  
S. LÓPEZ ◽  
R. SANDERSON ◽  
J. FRANCE

SUMMARYIn the present paper, a simplified procedure using few in situ data points is derived and then evaluated (using a large database) against reference values estimated with the standard nylon bag first-order kinetics model. The procedure proposed involved a two-stage mathematical process, with a statistical prediction of some degradation parameters (such as lag time) and then a kinetic model derived by assuming degradation follows zero-order kinetics to determine effective degradability in the rumen (E). In addition to the estimation of washout fraction and discrete lag, which is common to both procedures, the simplified procedure requires measurement of dry matter losses at one incubation time point only. Thus, interference of the animal rumen will be much reduced, which will lead to increased capacity for feed evaluation. Calibration of the zero-order model against the first-order model showed that suitable estimates of E can be obtained with disappearance at 24, 48 or 72 h as the single incubation end time point. The strength of the calibration is such that an end incubation time point as low as 24 h may be sufficient, which may reduce substantially the total incubation time required and thus the impact on the experimental animal. Relevant regression equations to predict reference values of parameters such as lag time or E are also developed and validated.



2019 ◽  
Vol 9 (8) ◽  
pp. 202-216
Author(s):  
N.P Ravindra Deyshappriya ◽  
M.M.T.D.M Kumari

This study seeks to recognize the determinants of behavioural intentions of households to recycle e-waste (ER = e-waste recycling) in Sri Lanka. Structural equation modelling was applied to analyse the data of 230 households. The measurement model confirmed the appropriateness of the considered constructs and variables to estimate statistical relationships among the recognized variables. The structural model emphasized that factors such as environmental awareness, attitude to recycling, social pressure, and rules and regulations positively affect the behavioural intentions to recycle e-waste while the inconvenience and cost of recycling affect it negatively in Sri Lanka. Apart from that the moderating effect stresses that previous experience in ER reduces the inconvenience of recycling and therefore past experience of ER indirectly increases the perception of ER. This study also highlights that socio-economic factors such as education, age, household size, gender, and income significantly affect the behavioural intentions to recycle e-waste and the impact of these demographic factors varies across the urban, rural, and state sectors.



Sign in / Sign up

Export Citation Format

Share Document