scholarly journals Past and future conditions for polar stratospheric cloud formation simulated by the Canadian Middle Atmosphere Model

2009 ◽  
Vol 9 (2) ◽  
pp. 483-495 ◽  
Author(s):  
P. Hitchcock ◽  
T. G. Shepherd ◽  
C. McLandress

Abstract. We analyze here the polar stratospheric temperatures in an ensemble of three 150-year integrations of the Canadian Middle Atmosphere Model (CMAM), an interactive chemistry-climate model which simulates ozone depletion and recovery, as well as climate change. A key motivation is to understand possible mechanisms for the observed trend in the extent of conditions favourable for polar stratospheric cloud (PSC) formation in the Arctic winter lower stratosphere. We find that in the Antarctic winter lower stratosphere, the low temperature extremes required for PSC formation increase in the model as ozone is depleted, but remain steady through the twenty-first century as the warming from ozone recovery roughly balances the cooling from climate change. Thus, ozone depletion itself plays a major role in the Antarctic trends in low temperature extremes. The model trend in low temperature extremes in the Arctic through the latter half of the twentieth century is weaker and less statistically robust than the observed trend. It is not projected to continue into the future. Ozone depletion in the Arctic is weaker in the CMAM than in observations, which may account for the weak past trend in low temperature extremes. In the future, radiative cooling in the Arctic winter due to climate change is more than compensated by an increase in dynamically driven downwelling over the pole.

2008 ◽  
Vol 8 (4) ◽  
pp. 16555-16583
Author(s):  
P. Hitchcock ◽  
T. G. Shepherd ◽  
C. McLandress

Abstract. Observations of the Arctic winter lower stratosphere over the past four decades suggest that the thermodynamic conditions required for the formation of polar stratospheric clouds (PSCs) have become increasingly widespread in the Northern Hemisphere. The trend is apparent only in the coldest winters during which the Arctic stratosphere is minimally disturbed by upwelling wave activity from the troposphere. The mechanism responsible for this increase remains unclear. In an effort to evaluate possible mechanisms, we analyze here the polar stratospheric temperatures in an ensemble of three 150-year integrations of the Canadian Middle Atmosphere Model (CMAM), an interactive chemistry-climate model which simulates ozone depletion and recovery, as well as climate change. We find that in the Antarctic winter lower stratosphere, the low temperature extremes required for PSC formation increase in the model as ozone is depleted, but remain steady through the twenty-first century as the warming from ozone recovery roughly balances the cooling from climate change. Thus, ozone depletion itself plays a major role in the Antarctic response. The model trend in low temperature extremes in the Arctic through the latter half of the twentieth century is weaker and less statistically robust than the observed trend. It is not projected to continue into the future. Ozone depletion in the Arctic is weaker in the CMAM than in observations, which may account for the weak past trend in low temperature extremes. In the future, radiative cooling in the Arctic winter due to climate change is more than compensated by an increase in dynamically driven downwelling over the pole.


2016 ◽  
Vol 29 (13) ◽  
pp. 4927-4938 ◽  
Author(s):  
Diane J. Ivy ◽  
Susan Solomon ◽  
Harald E. Rieder

Abstract Radiative and dynamical heating rates control stratospheric temperatures. In this study, radiative temperature trends due to ozone depletion and increasing well-mixed greenhouse gases from 1980 to 2000 in the polar stratosphere are directly evaluated, and the dynamical contributions to temperature trends are estimated as the residual between the observed and radiative trends. The radiative trends are obtained from a seasonally evolving fixed dynamical heating calculation with the Parallel Offline Radiative Transfer model using four different ozone datasets, which provide estimates of observed ozone changes. In the spring and summer seasons, ozone depletion leads to radiative cooling in the lower stratosphere in the Arctic and Antarctic. In Arctic summer there is weak wave driving, and the radiative cooling due to ozone depletion is the dominant driver of observed trends. In late winter and early spring, dynamics dominate the changes in Arctic temperatures. In austral spring and summer in the Antarctic, strong dynamical warming throughout the mid- to lower stratosphere acts to weaken the strong radiative cooling associated with the Antarctic ozone hole and is indicative of a strengthening of the Brewer–Dobson circulation. This dynamical warming is a significant term in the thermal budget over much of the Antarctic summer stratosphere, including in regions where strong radiative cooling due to ozone depletion can still lead to net cooling despite dynamical terms. Quantifying the contributions of changes in radiation and dynamics to stratospheric temperature trends is important for understanding how anthropogenic forcings have affected the historical trends and necessary for projecting the future.


2021 ◽  
Author(s):  
Catherine Wilka ◽  
Susan Solomon ◽  
Doug Kinnison ◽  
David Tarasick

Abstract. Without the Montreal Protocol the already extreme Arctic ozone losses in boreal spring of 2020 would be expected to have produced an Antarctic-like ozone hole, with an area of total ozone below 220 DU of about 20 million km2. Record observed local lows of 0.1 ppmv at some altitudes in the lower stratosphere would have reached 0.01, again similar to the Antarctic. This provides an opportunity to test parameterizations of polar stratospheric cloud impacts on denitrification, and thereby to improve stratospheric models. Spring ozone depletion would have begun earlier and lasted longer without the Montreal Protocol, and by 2020 the year-round ozone depletion would have begun to dramatically diverge from the observed case. This study reinforces that the historically extreme 2020 Arctic ozone depletion is not cause for concern over the Montreal Protocol's effectiveness, but rather demonstrates that the Montreal Protocol indeed merits celebration for avoiding an Arctic ozone hole.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 454
Author(s):  
Andrew R. Jakovlev ◽  
Sergei P. Smyshlyaev ◽  
Vener Y. Galin

The influence of sea-surface temperature (SST) on the lower troposphere and lower stratosphere temperature in the tropical, middle, and polar latitudes is studied for 1980–2019 based on the MERRA2, ERA5, and Met Office reanalysis data, and numerical modeling with a chemistry-climate model (CCM) of the lower and middle atmosphere. The variability of SST is analyzed according to Met Office and ERA5 data, while the variability of atmospheric temperature is investigated according to MERRA2 and ERA5 data. Analysis of sea surface temperature trends based on reanalysis data revealed that a significant positive SST trend of about 0.1 degrees per decade is observed over the globe. In the middle latitudes of the Northern Hemisphere, the trend (about 0.2 degrees per decade) is 2 times higher than the global average, and 5 times higher than in the Southern Hemisphere (about 0.04 degrees per decade). At polar latitudes, opposite SST trends are observed in the Arctic (positive) and Antarctic (negative). The impact of the El Niño Southern Oscillation phenomenon on the temperature of the lower and middle atmosphere in the middle and polar latitudes of the Northern and Southern Hemispheres is discussed. To assess the relative influence of SST, CO2, and other greenhouse gases’ variability on the temperature of the lower troposphere and lower stratosphere, numerical calculations with a CCM were performed for several scenarios of accounting for the SST and carbon dioxide variability. The results of numerical experiments with a CCM demonstrated that the influence of SST prevails in the troposphere, while for the stratosphere, an increase in the CO2 content plays the most important role.


2005 ◽  
Vol 5 (1) ◽  
pp. 961-1006 ◽  
Author(s):  
M. K. van Aalst ◽  
J. Lelieveld ◽  
B. Steil ◽  
C. Brühl ◽  
P. Jöckel ◽  
...  

Abstract. We have performed a 4-year simulation with the Middle Atmosphere General Circulation Model MAECHAM5/MESSy, while slightly nudging the model’s meteorology in the free troposphere (below 113 hPa) towards ECMWF analyses. We show that the nudging 5 technique, which leaves the middle atmosphere almost entirely free, enables comparisons with synoptic observations. The model successfully reproduces many specific features of the interannual variability, including details of the Antarctic vortex structure. In the Arctic, the model captures general features of the interannual variability, but falls short in reproducing the timing of sudden stratospheric warmings. A 10 detailed comparison of the nudged model simulations with ECMWF data shows that the model simulates realistic stratospheric temperature distributions and variabilities, including the temperature minima in the Antarctic vortex. Some small (a few K) model biases were also identified, including a summer cold bias at both poles, and a general cold bias in the lower stratosphere, most pronounced in midlatitudes. A comparison 15 of tracer distributions with HALOE observations shows that the model successfully reproduces specific aspects of the instantaneous circulation. The main tracer transport deficiencies occur in the polar lowermost stratosphere. These are related to the tropopause altitude as well as the tracer advection scheme and model resolution. The additional nudging of equatorial zonal winds, forcing the quasi-biennial oscillation, sig20 nificantly improves stratospheric temperatures and tracer distributions.


2015 ◽  
Vol 15 (4) ◽  
pp. 4973-5029 ◽  
Author(s):  
G. L. Manney ◽  
Z. D. Lawrence ◽  
M. L. Santee ◽  
N. J. Livesey ◽  
A. Lambert ◽  
...  

Abstract. A sudden stratospheric warming (SSW) in early January 2013 caused the polar vortex to split. After the lower stratospheric vortex split on 8 January, the two offspring vortices – one over Canada and the other over Siberia – remained intact, well-confined, and largely at latitudes that received sunlight until they reunited at the end of January. As the SSW began, temperatures abruptly rose above chlorine activation thresholds throughout the lower stratosphere. The vortex was very disturbed prior to the SSW, and was exposed to much more sunlight than usual in December 2012 and January 2013. Aura Microwave Limb Sounder (MLS) nitric acid (HNO3) data and observations from CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) indicate extensive polar stratospheric cloud (PSC) activity, with evidence of PSCs containing solid nitric acid trihydrate particles during much of December 2012. Consistent with the sunlight exposure and PSC activity, MLS observations show that chlorine monoxide (ClO) became enhanced early in December. Despite the cessation of PSC activity with the onset of the SSW, enhanced vortex ClO persisted until mid-February, indicating lingering chlorine activation. The smaller Canadian offspring vortex had lower temperatures, lower HNO3, lower hydrogen chloride (HCl), and higher ClO in late January than the Siberian vortex. Chlorine deactivation began later in the Canadian than in the Siberian vortex. HNO3 remained depressed within the vortices after temperatures rose above the PSC existence threshold, and passive transport calculations indicate vortex-averaged denitrification of about 4 ppbv; the resulting low HNO3 values persisted until the vortex dissipated in mid-February. Consistent with the strong chlorine activation and exposure to sunlight, MLS measurements show rapid ozone loss commencing in mid-December and continuing through January. Lagrangian transport estimates suggest ~ 0.7–0.8 ppmv (parts per million by volume) vortex-averaged chemical ozone loss by late January near 500 K (~ 21 km), with substantial loss occurring from ~ 450 to 550 K. The surface area of PSCs in December 2012 was larger than that in any other December observed by CALIPSO. As a result of denitrification, HNO3 abundances in 2012/13 were among the lowest in the MLS record for the Arctic. ClO enhancement was much greater in December 2012 through mid-January 2013 than that at the corresponding time in any other Arctic winter observed by MLS. Furthermore, reformation of HCl appeared to play a greater role in chlorine deactivation than in more typical Arctic winters. Ozone loss in December 2012 and January 2013 was larger than any previously observed in those months. This pattern of exceptional early winter polar processing and ozone loss resulted from the unique combination of dynamical conditions associated with the early January 2013 SSW, namely unusually low temperatures in December 2012 and offspring vortices that remained well-confined and largely in sunlit regions for about a month after the vortex split.


2016 ◽  
Author(s):  
Christine Smith-Johnsen ◽  
Yvan Orsolini ◽  
Frode Stordal ◽  
Varavut Limpasuvan ◽  
Kristell Pérot

Abstract. A Sudden Stratospheric Warming (SSW) affects the chemistry and dynamics of the middle atmosphere. The major warmings occur roughly every second year in the Northern Hemispheric (NH) winter, but has only been observed once in the Southern Hemisphere (SH), during the Antarctic winter of 2002. Using the National Center for Atmospheric Research's (NCAR) Whole Atmosphere Community Climate Model with specified dynamics (WACCM-SD), this study investigates the effects of this rare warming event on the ozone layer located around the SH mesopause. This secondary ozone layer changes with respect to hydrogen, oxygen, temperature, and the altered SH polar circulation during the major SSW. The 2002 SH winter was characterized by three zonal-mean zonal wind reductions in the upper stratosphere before a fourth wind reversal reaches the lower stratosphere, marking the onset of the major SSW. At the time of these four wind reversals, a corresponding episodic increase can be seen in the modeled nighttime ozone concentration in the secondary ozone layer. Observations by the Global Ozone Monitoring by Occultation of Stars (GOMOS, an instrument on board the satellite Envisat) demonstrate similar ozone enhancement as in the model. This ozone increase is attributable largely to enhanced upwelling and the associated cooling of the altitude region in conjunction with the wind reversal. Unlike its NH counterpart, the secondary ozone layer during the SH major SSW appeared to be impacted more by the effects of atomic oxygen than hydrogen.


2004 ◽  
Vol 12 (1) ◽  
pp. 1-70 ◽  
Author(s):  
S Perin ◽  
D RS Lean

Depletion of stratospheric ozone, the principal atmospheric attenuator of ultraviolet-B (UVB) radiation, by man-made chemicals has raised scientific and public concern regarding the biological effects of increased UVB radiation on Earth. There is an increased awareness that existing levels of solar UV radiation have an important influence on biological and chemical processes in aquatic ecosystems. For aquatic organisms, numerous studies have shown direct detrimental effects of UVB radiation at each trophic level. Fortunately, many aquatic organisms also possess a range of photoprotective mechanisms against UV radiation toxicity. In addition to its direct impact, harmful effects of UVB radiation at a single-trophic level can cascade through the food web and indirectly affect organisms from other trophic levels. Because UV radiation photochemically reacts with humic substances and other photosensitive agents in the water, increases in solar UVB can also indirectly affect aquatic organisms through the production and (or) release of different photoproducts like biologically available nutrients and harmful reactive oxygen species. Polar aquatic ecosystems have been of particular concern, since stratospheric ozone-related UVB increases have been the greatest in these regions. With the influences of climate warming and the possibility of future volcanic eruptions, ozone losses are expected to get worse in the Arctic stratosphere, and the ozone layer recovery may not follow the slow decline of industrial ozone-depleting compounds in the atmosphere. Climate warming is also expected to bring important changes in underwater ultraviolet radiation (UVR) penetration in Arctic freshwaters that would be more significant to the aquatic biota than stratospheric ozone depletion.Key words: Arctic, UV radiation, UVB, ozone depletion, climate change, aquatic ecosystems.


2016 ◽  
Vol 29 (9) ◽  
pp. 3199-3218 ◽  
Author(s):  
Feng Li ◽  
Yury V. Vikhliaev ◽  
Paul A. Newman ◽  
Steven Pawson ◽  
Judith Perlwitz ◽  
...  

Abstract Stratospheric ozone depletion plays a major role in driving climate change in the Southern Hemisphere. To date, many climate models prescribe the stratospheric ozone layer’s evolution using monthly and zonally averaged ozone fields. However, the prescribed ozone underestimates Antarctic ozone depletion and lacks zonal asymmetries. This study investigates the impact of using interactive stratospheric chemistry instead of prescribed ozone on climate change simulations of the Antarctic and Southern Ocean. Two sets of 1960–2010 ensemble transient simulations are conducted with the coupled ocean version of the Goddard Earth Observing System Model, version 5: one with interactive stratospheric chemistry and the other with prescribed ozone derived from the same interactive simulations. The model’s climatology is evaluated using observations and reanalysis. Comparison of the 1979–2010 climate trends between these two simulations reveals that interactive chemistry has important effects on climate change not only in the Antarctic stratosphere, troposphere, and surface, but also in the Southern Ocean and Antarctic sea ice. Interactive chemistry causes stronger Antarctic lower stratosphere cooling and circumpolar westerly acceleration during November–January. It enhances stratosphere–troposphere coupling and leads to significantly larger tropospheric and surface westerly changes. The significantly stronger surface wind stress trends cause larger increases of the Southern Ocean meridional overturning circulation, leading to year-round stronger ocean warming near the surface and enhanced Antarctic sea ice decrease.


2013 ◽  
Vol 13 (10) ◽  
pp. 5299-5308 ◽  
Author(s):  
J.-P. Pommereau ◽  
F. Goutail ◽  
F. Lefèvre ◽  
A. Pazmino ◽  
C. Adams ◽  
...  

Abstract. An unprecedented ozone loss occurred in the Arctic in spring 2011. The details of the event are revisited from the twice-daily total ozone and NO2 column measurements of the eight SAOZ/NDACC (Système d'Analyse par Observation Zénithale/Network for Detection of Atmospheric Composition Changes) stations in the Arctic. It is shown that the total ozone depletion in the polar vortex reached 38% (approx. 170 DU) by the end of March, which is larger than the 30% of the previous record in 1996. Aside from the long extension of the cold stratospheric NAT PSC period, the amplitude of the event is shown to be resulting from a record daily total ozone loss rate of 0.7% d−1 after mid-February, never seen before in the Arctic but similar to that observed in the Antarctic over the last 20 yr. This high loss rate is attributed to the absence of NOx in the vortex until the final warming, in contrast to all previous winters where, as shown by the early increase of NO2 diurnal increase, partial renoxification occurs by import of NOx or HNO3 from the outside after minor warming episodes, leading to partial chlorine deactivation. The cause of the absence of renoxification and thus of high loss rate, is attributed to a vortex strength similar to that of the Antarctic but never seen before in the Arctic. The total ozone reduction on 20 March was identical to that of the 2002 Antarctic winter, which ended around 20 September, and a 15-day extension of the cold period would have been enough to reach the mean yearly amplitude of the Antarctic ozone hole. However there is no sign of trend since 1994, either in PSC (polar stratospheric cloud) volume (volume of air cold enough to allow formation of PSCs), early winter denitrification, late vortex renoxification, and vortex strength or in total ozone loss. The unprecedented large Arctic ozone loss in 2011 appears to result from an extreme meteorological event and there is no indication of possible strengthening related to climate change.


Sign in / Sign up

Export Citation Format

Share Document