scholarly journals Modelled thermal and dynamical responses of the middle atmosphere to EPP-induced ozone changes

2015 ◽  
Vol 15 (22) ◽  
pp. 33283-33329 ◽  
Author(s):  
K. Karami ◽  
P. Braesicke ◽  
M. Kunze ◽  
U. Langematz ◽  
M. Sinnhuber ◽  
...  

Abstract. Energetic particles including protons, electrons and heavier ions, enter the Earth's atmosphere over the polar regions of both hemispheres, where they can greatly disturb the chemical composition of the upper and middle atmosphere and contribute to ozone depletion in the stratosphere and mesosphere. The chemistry–climate general circulation model EMAC is used to investigate the impact of changed ozone concentration due to Energetic Particle Precipitation (EPP) on temperature and wind fields. The results of our simulations show that ozone perturbation is a starting point for a chain of processes resulting in temperature and circulation changes over a wide range of latitudes and altitudes. In both hemispheres, as winter progresses the temperature and wind anomalies move downward with time from the mesosphere/upper stratosphere to the lower stratosphere. In the Northern Hemisphere (NH), once anomalies of temperature and zonal wind reach the lower stratosphere, another signal develops in mesospheric heights and moves downward. Analyses of Eliassen and Palm (EP) flux divergence show that accelerating or decelerating of the stratospheric zonal flow is in harmony with positive and negative anomalies of the EP flux divergences, respectively. This results suggest that the oscillatory mode in the downwelling signal of temperature and zonal wind in our simulations are the consequence of interaction between the resolved waves in the model and the mean stratospheric flow. Therefore, any changes in the EP flux divergence lead to anomalies in the zonal mean zonal wind which in turn feed back on the propagation of Rossby waves from the troposphere to higher altitudes. The analyses of Rossby waves refractive index show that the EPP-induced ozone anomalies are capable of altering the propagation condition of the planetary-scale Rossby waves in both hemispheres. It is also found that while ozone depletion was confined to mesospheric and stratospheric heights, but it is capable to alter Rossby wave propagation down to tropospheric heights. In response to an accelerated polar vortex in the Southern Hemisphere (SH) late wintertime, we found almost two weeks delay in the occurrence of mean dates of Stratospheric Final Warming (SFW). These results suggest that the stratosphere is not merely a passive sink of wave activity from below, but it plays an active role in determining its own budget of wave activity.

2019 ◽  
Author(s):  
Haiyan Li ◽  
Robin Pilch Kedzierski ◽  
Katja Matthes

Abstract. The westerly phase of the stratospheric Quasi-Biennial Oscillation (QBO) was reversed during Northern Hemisphere winter 2015/2016 for the first time since records began in 1953. Recent studies proposed that Rossby waves propagating from the extratropics played an important role during the reversal event in 2015/2016. Building upon these studies, we separated the extratropical Rossby waves into different wavenumbers and time-scales by analyzing the combined ERA-40 and ERA-Interim reanalysis zonal wind, meridional wind, vertical velocity and potential vorticity daily mean data from 1958 to 2017. We find that both synoptic and quasi-stationary Rossby waves are dominant contributors to the reversal event in 2015/2016 in the tropical lower stratosphere. By comparing the results for 2015/2016 with two additional events (1959/1960 and 2010/2011), we find that the largest differences in Rossby wave momentum fluxes are related to synoptic-scale Rossby waves of periods from 5–20 days. We demonstrate for the first time, that these enhanced synoptic Rossby waves at 40 hPa in the tropics in February 2016 originate from the extratropics as well as from local wave generation. The strong Rossby wave activity in 2016 in the tropics happened at a time with weak westerly zonal winds. This coincidence of anomalous factors did not happen in any of the previous events. In addition to the anomalous behavior in the tropical lower stratosphere in 2015/16, we explored the forcing of the unusually long-lasting westerly zonal wind phase in the upper stratosphere (at 20 hPa). Our results reveal that mainly enhanced Kelvin wave activity contributed to this feature. This was in close relation with the strong El Niño event in 2015/2016, which forced more Kelvin waves in the equatorial troposphere. The easterly or very weak westerly zonal winds present around 30–70 hPa allowed these Kelvin waves to propagate vertically and deposit their momentum around 20 hPa, maintaining the westerlies there.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 454
Author(s):  
Andrew R. Jakovlev ◽  
Sergei P. Smyshlyaev ◽  
Vener Y. Galin

The influence of sea-surface temperature (SST) on the lower troposphere and lower stratosphere temperature in the tropical, middle, and polar latitudes is studied for 1980–2019 based on the MERRA2, ERA5, and Met Office reanalysis data, and numerical modeling with a chemistry-climate model (CCM) of the lower and middle atmosphere. The variability of SST is analyzed according to Met Office and ERA5 data, while the variability of atmospheric temperature is investigated according to MERRA2 and ERA5 data. Analysis of sea surface temperature trends based on reanalysis data revealed that a significant positive SST trend of about 0.1 degrees per decade is observed over the globe. In the middle latitudes of the Northern Hemisphere, the trend (about 0.2 degrees per decade) is 2 times higher than the global average, and 5 times higher than in the Southern Hemisphere (about 0.04 degrees per decade). At polar latitudes, opposite SST trends are observed in the Arctic (positive) and Antarctic (negative). The impact of the El Niño Southern Oscillation phenomenon on the temperature of the lower and middle atmosphere in the middle and polar latitudes of the Northern and Southern Hemispheres is discussed. To assess the relative influence of SST, CO2, and other greenhouse gases’ variability on the temperature of the lower troposphere and lower stratosphere, numerical calculations with a CCM were performed for several scenarios of accounting for the SST and carbon dioxide variability. The results of numerical experiments with a CCM demonstrated that the influence of SST prevails in the troposphere, while for the stratosphere, an increase in the CO2 content plays the most important role.


2021 ◽  
Author(s):  
Alain Hauchecorne ◽  
Chantal Claud ◽  
Philippe Keckhut

<p>Sudden Stratospheric Warming (SSW) is the most spectacular dynamic event occurring in the middle atmosphere. It can lead to a warming of the winter polar stratosphere by a few tens of K in one to two weeks and a reversal of the stratospheric circulation from wintertime prevailing westerly winds to easterly winds similar to summer conditions. This strong modification of the stratospheric circulation has consequences for several applications, including the modification of the stratospheric infrasound guide. Depending on the date of the SSW, the westerly circulation can be re-established if the SSW occurs in mid-winter or the summer easterly circulation can be definitively established if the SSW occurs in late winter. In the latter case it is called Final Warming (FW). Each year, it is possible to define the date of the FW as the date of the final inversion of the zonal wind at 60°N - 10 hPa . If the FW is associated with a strong peak of planetary wave activity and a rapid increase in polar temperature, it is classified as dynamic FW. If the transition to the easterly wind is smooth without planetary wave activity, the FW is classified as radiative.</p><p>The analysis of the ERA5 database, which has recently been extended to 1950 (71 years of data), allowed a statistical analysis of the evolution of the stratosphere in winter. The main conclusions of this study will be presented :</p><p>- the state of the polar vortex in a given month is anticorrelated with its state 2 to 3 months earlier. The beginning of winter is anticorrelated with mid-winter and mid-winter is anticorrelated with the end of winter;</p><p>- dynamic FWs occur early in the season (March - early April) and are associated with a strong positive polar temperature anomaly, while radiative FWs occur later (late April - early May) without a polar temperature anomaly;</p><p>- the summer stratosphere (polar temperature and zonal wind) keeps the memory of its state in April-May at the time of FW at least until July .</p><p>These results could help to improve medium-range weather forecasts in the Northern Hemisphere due to the strong dynamic coupling between the troposphere and stratosphere during SSW events.</p>


2006 ◽  
Vol 63 (5) ◽  
pp. 1420-1431 ◽  
Author(s):  
W. A. Norton

Abstract The atmospheric response to a localized distribution of tropical heating is examined in terms of the stationary waves excited and how these impact the mean flow near the tropical tropopause. This is done by examining nonlinear simulations of the Gill model with a primitive equation model that extends from the surface up into the stratosphere. The model produces strong cooling of zonal mean temperatures near the tropical tropopause when the heating is on the equator but weaker cooling with the heating at 15°N. The model shows that equatorial Rossby waves that penetrate the lower stratosphere and changes in EP flux divergence that correspond to the observed changes between December and August. It is suggested that ascent in the upper tropical troposphere is driven by vorticity advection or equivalently potential vorticity fluxes due to these equatorial Rossby waves, particularly when the heating is close to the equator. The model results provide support to the hypothesis that the annual cycle in tropical tropopause temperatures is a result of the annual variation in latitude of tropical heating and that equatorial Rossby waves are key in producing the response in the upper troposphere and lower stratosphere.


2020 ◽  
Author(s):  
Andrea Schneidereit ◽  
Hauke Schmidt ◽  
Claudia Stephan

<p>Several current general atmospheric circulation models provide sufficiently high resolutions to resolve important parts of the internal gravity wave spectrum allowing for numerical experiments without GW drag parameterizations. GWs start to be well resolved from horizontal wavelengths of about 7 times the horizontal grid spacing. How much does the resolved wave spectrum and its forcing on the mean circulation depend on the vertical resolution?</p><p>−1,The middle atmosphere summer hemisphere provides a suitable background to investigate this question. The mean stratospheric and mesospheric circulation is characterised by prevailing easterlies which prevent planetary wave propagation upwards and represents a mean state driven by IGWs. The sensitivity of the forcing by IGWs is analysed on the basis of the Eliassen-Palm (EP) flux divergence, which describes the forcing on the circulation by resolved eddies.<br>Model simulations are performed using the upper atmosphere version of the ICON (ICOsahedral Nonhydrostatic) general circulation model, UA-ICON (Borchert et al. 2019, GMD). The simulations start in October and run for an extended austral summer season until March with a horizontal grid spacing of roughly 20 km. The top of the model atmosphere is located at 150 km. Three different model configurations are used with 90, 180, and 360 vertical model layers. The mean vertical grid spacing ranges from roughly 1300 m (90 layers) to 320 m (360 layers) at stratospheric levels, and from roughly 2300 m to 500 m at mesospheric levels. Gravity wave drag parameterizations (orographic and non-orographic) are turned off. The resolved forcing on the mean state due to the EP flux divergence is decomposed into contributions of different scales with respect to horizontal wave numbers. For contributions of IGWs wave numbers above 20 are considered.</p><p>The stratospheric and mesospheric easterlies appear stronger in the lower resolution from October to the end of the austral summer season. Westerlies occur above the mesopause. This strong vertical gradient in the zonal mean zonal wind amplifies in the lower resolution. At the beginning of the simulation period, differences between the mean states are weak, of the order of 5 ms<sup>−1</sup> , and strengthen during the summer season. The forcing due to internal GWs appears stronger in the lower resolution at higher altitudes and amplifies in the region of the strong vertical gradient of the zonal mean zonal wind. Furthermore, wave spectra are discussed. In accordance with previous studies, an increased vertical resolution results in a reduction of the IGW forcing close to strong zonal mean zonal wind gradients in the upper mesosphere/lower thermosphere.</p>


2020 ◽  
Author(s):  
Noboru Nakamura

<p>We present evidence that stratospheric sudden warmings (SSWs) are, on average, a threshold behavior of finite-amplitude Rossby waves arising from wave-mean flow interaction. Competition between an increasing wave activity and a decreasing zonal-mean zonal wind sets a limit to the upward wave activity flux of a stationary Rossby wave.  A rapid, spontaneous vortex breakdown occurs once the upwelling wave activity flux reaches the limit, or equivalently, once the zonal-mean zonal wind drops below a certain fraction of the wave-free, reference-state wind obtained from the zonalized quasigeostrophic potential vorticity.  This threshold faction is 0.5 in theory and about 0.3 in reanalyses.  We use the ratio of the zonal-mean zonal wind to the reference-state wind as a local, instantaneous measure of the proximity to vortex breakdown, i.e. preconditioning.  The ratio generally stays above the threshold during strong-vortex winters until a pronounced final warming, whereas during weak-vortex winters it approaches the threshold early in the season, culminating in a precipitous drop in midwinter as SSWs form. The essence of the threshold behavior is captured by a semiempirical 1D model of SSWs, analogous to the “traffic jam” model of Nakamura and Huang for atmospheric blocking. This model predicts salient features of SSWs including rapid vortex breakdown and downward migration of the wave activity/zonal wind anomalies, with analytical expressions for the respective timescales. Model’s response to a variety of transient wave forcing and damping is discussed.</p><p> </p><p> </p><div> </div><p> </p>


2012 ◽  
Vol 69 (3) ◽  
pp. 802-818 ◽  
Author(s):  
Charles McLandress ◽  
Theodore G. Shepherd ◽  
Saroja Polavarapu ◽  
Stephen R. Beagley

Abstract Nearly all chemistry–climate models (CCMs) have a systematic bias of a delayed springtime breakdown of the Southern Hemisphere (SH) stratospheric polar vortex, implying insufficient stratospheric wave drag. In this study the Canadian Middle Atmosphere Model (CMAM) and the CMAM Data Assimilation System (CMAM-DAS) are used to investigate the cause of this bias. Zonal wind analysis increments from CMAM-DAS reveal systematic negative values in the stratosphere near 60°S in winter and early spring. These are interpreted as indicating a bias in the model physics, namely, missing gravity wave drag (GWD). The negative analysis increments remain at a nearly constant height during winter and descend as the vortex weakens, much like orographic GWD. This region is also where current orographic GWD parameterizations have a gap in wave drag, which is suggested to be unrealistic because of missing effects in those parameterizations. These findings motivate a pair of free-running CMAM simulations to assess the impact of extra orographic GWD at 60°S. The control simulation exhibits the cold-pole bias and delayed vortex breakdown seen in the CCMs. In the simulation with extra GWD, the cold-pole bias is significantly reduced and the vortex breaks down earlier. Changes in resolved wave drag in the stratosphere also occur in response to the extra GWD, which reduce stratospheric SH polar-cap temperature biases in late spring and early summer. Reducing the dynamical biases, however, results in degraded Antarctic column ozone. This suggests that CCMs that obtain realistic column ozone in the presence of an overly strong and persistent vortex may be doing so through compensating errors.


2009 ◽  
Vol 9 (1) ◽  
pp. 1977-2020
Author(s):  
F. Khosrawi ◽  
R. Müller ◽  
M. H. Proffitt ◽  
R. Ruhnke ◽  
O. Kirner ◽  
...  

Abstract. 1-year data sets of monthly averaged nitrous oxide (N2O) and ozone (O3) derived from satellite measurements were used as a tool for the evaluation of atmospheric photochemical models. Two 1-year data sets, one derived from the Improved Limb Atmospheric Spectrometer (ILAS and ILAS-II) and one from the Odin Sub-Millimetre Radiometer (Odin/SMR) were employed. Here, these data sets are used for the evaluation of two Chemical Transport Models (CTMs), the Karlsruhe Simulation Model of the Middle Atmosphere (KASIMA) and the Chemical Lagrangian Model of the Stratosphere (CLaMS) as well as for one Chemistry-Climate Model (CCM), the atmospheric chemistry general circulation model ECHAM5/MESSy1 (E5M1) in the lower stratosphere with focus on the Northern Hemisphere. Since the Odin/SMR measurements cover the entire hemisphere, the evaluation is performed for the entire hemisphere as well as for the low latitudes, midlatitudes and high latitudes using the Odin/SMR 1-year data set as reference. To assess the impact of using different data sets for such an evaluation study we repeat the evaluation for the polar lower stratosphere using the ILAS/ILAS-II data set. Only small differences were found using ILAS/ILAS-II instead of Odin/SMR as a reference, thus, showing that the results are not influenced by the particular satellite data set used for the evaluation. The evaluation of CLaMS, KASIMA and E5M1 shows that all models are in good agreement with Odin/SMR and ILAS/ILAS-II. Differences are generally in the range of ±20%. Larger differences (up to −40%) are found in all models at 500±25 K for N2O mixing ratios greater than 200 ppb. Generally, the largest differences were found for the tropics and the lowest for the polar regions. However, an underestimation of polar winter ozone loss was found both in KASIMA and E5M1 both in the Northern and Southern Hemisphere.


2019 ◽  
Author(s):  
Nadja Samtleben ◽  
Christoph Jacobi ◽  
Petr Pišoft ◽  
Petr Šácha ◽  
Aleš Kuchař

Abstract. In order to investigate the impact of a locally confined gravity wave (GW) hotspot, a sensitivity study based on simulations of the middle atmosphere circulation during northern winter was performed with a nonlinear, mechanistic, global circulation model. To this end, for the hotspot region we selected a fixed longitude range in the East Asian region (120° E–170° E) and a latitude range from 22.5° N–52.5° N between 18 km and 30 km, which was then shifted northward in steps of 5°. For the southernmost hotspots, we observe a decreased stationary planetary wave (SPW) 1 activity in the upper stratosphere/lower mesosphere, i.e. less SPWs 1 are propagating upwards. These GW hotspots are leading to a negative refractive index inhibiting SPW propagation at midlatitudes. The decreased SPW 1 activity is connected with an increased zonal mean zonal wind at lower latitudes. This in turn decreases the meridional potential vorticity gradient (qy) from midlatitudes towards the polar region. A reversed qy indicates local baroclinic instability which generates SPWs 1 in the polar region, where we observe a strong positive Eliassen-Palm (EP) divergence. Thus, the EP flux is increasing towards the polar stratosphere (corresponding to enhanced SPW 1 amplitudes) where the SPWs 1 are breaking and the zonal mean zonal wind is decreasing. Thus, the local GW forcing is leading to a displacement of the polar vortex towards lower latitudes. The effect of the local baroclinic instability indicated by the reversed qy also produces SPWs 1 in the lower mesosphere. The effect on the dynamics in the middle atmosphere by GW hotspots which are located northward of 50° N is negligible because the refractive index of the atmosphere is strongly negative in the polar region. Thus, any changes in the SPW activity due to the local GW forcing are quite ineffective.


2020 ◽  
Author(s):  
Paolo Ghinassi ◽  
Federico Fabiano ◽  
Virna L. Meccia ◽  
Susanna Corti

<p>Rossby waves play a fundamental role for both climate and weather. They are in fact associated with heat, momentum and moisture transport across large distances and with different types of weather at the surface. Assessing how they are represented in climate models is thus of primary importance to understand both predictability and the present and future climate. In this study we investigate how ENSO and the AMV affect the large scale flow pattern in the upper troposphere of the Northern Hemisphere, using reanalysis data and data from the PRIMAVERA simulations.</p><p>The upper tropospheric large scale flow is investigated in terms of the Rossby wave activity associated with persistent and recurrent patterns over the Pacific-North American and Euro-Atlantic regions during winter, the so called weather regimes. In order to quantify the vigour of Rossby wave activity associated with each weather regime we make use of a recently developed diagnostic based on Finite Amplitude Local Wave Activity in isentropic coordinates, partitioning the total wave activity into the stationary and transient components. The former is associated with quasi-stationary, planetary Rossby waves, whereas the latter is associated with synoptic scale Rossby wave packets. This allows one to quantify the contribution from stationary versus transient eddies in the total Rossby wave activity linked to each weather regime.</p><p>In this study we explore how ENSO and the AMV affect both the weather regimes frequencies and the upper tropospheric waviness in the Pacific and Atlantic storm tracks, respectively. Furthermore we analyse how both the stationary and transient wave activity component modulate the onset and transition between different regimes.</p>


Sign in / Sign up

Export Citation Format

Share Document