scholarly journals The impact of diurnal variability in sea surface temperature on the atlantic air-sea CO<sub>2</sub> flux

2008 ◽  
Vol 8 (4) ◽  
pp. 15825-15853 ◽  
Author(s):  
H. Kettle ◽  
C. J. Merchant ◽  
C. D. Jeffery ◽  
M. J. Filipiak ◽  
C. L. Gentemann

Abstract. The effect of diurnal variations in sea surface temperature (SST) on the air-sea flux of CO2 over the central Atlantic ocean and Mediterranean Sea is evaluated for 2005–2006. We use high resolution hourly satellite SST data to determine the diurnal warming (ΔSST). The CO2 flux is then computed using three different temperature fields – a foundation temperature (Tf, measured at a depth where there is no diurnal variation), Tf plus the hourly ΔSST and Tf plus monthly-averaged ΔSST. This is done in conjunction with a physically-based parameterisation for the gas transfer velocity (NOAA-COARE). The differences between the fluxes evaluated for these three different temperature fields quantifies the effects of both diurnal warming and diurnal covariations. We find that including diurnal warming increases the CO2 flux out of the Atlantic for 2005–2006 from 9.6 Tg C a−1 to 30.4 Tg C a−1 (hourly ΔSST) and 31.2 Tg C a−1 (monthly ΔSST). Diurnal warming, therefore, has a large impact on the annual net CO2 flux but diurnal covariations in variables are negligible implying that CO2 fluxes may be adequately computed using monthly averaged ΔSSTs along with a suitable foundation temperature.

2009 ◽  
Vol 9 (2) ◽  
pp. 529-541 ◽  
Author(s):  
H. Kettle ◽  
C. J. Merchant ◽  
C. D. Jeffery ◽  
M. J. Filipiak ◽  
C. L. Gentemann

Abstract. The effect of diurnal variations in sea surface temperature (SST) on the air-sea flux of CO2 over the central Atlantic ocean and Mediterranean Sea (60 S–60 N, 60 W–45 E) is evaluated for 2005–2006. We use high spatial resolution hourly satellite ocean skin temperature data to determine the diurnal warming (ΔSST). The CO2 flux is then computed using three different temperature fields – a foundation temperature (Tf, measured at a depth where there is no diurnal variation), Tf, plus the hourly ΔSST and Tf, plus the monthly average of the ΔSSTs. This is done in conjunction with a physically-based parameterisation for the gas transfer velocity (NOAA-COARE). The differences between the fluxes evaluated for these three different temperature fields quantify the effects of both diurnal warming and diurnal covariations. We find that including diurnal warming increases the CO2 flux out of this region of the Atlantic for 2005–2006 from 9.6 Tg C a−1 to 30.4 Tg C a−1 (hourly ΔSST) and 31.2 Tg C a−1 (monthly average of ΔSST measurements). Diurnal warming in this region, therefore, has a large impact on the annual net CO2 flux but diurnal covariations are negligible. However, in this region of the Atlantic the uptake and outgassing of CO2 is approximately balanced over the annual cycle, so although we find diurnal warming has a very large effect here, the Atlantic as a whole is a very strong carbon sink (e.g. −920 Tg C a−1 Takahashi et al., 2002) making this is a small contribution to the Atlantic carbon budget.


2013 ◽  
Vol 26 (8) ◽  
pp. 2546-2556 ◽  
Author(s):  
Carol Anne Clayson ◽  
Alec S. Bogdanoff

Abstract Diurnal sea surface warming affects the fluxes of latent heat, sensible heat, and upwelling longwave radiation. Diurnal warming most typically reaches maximum values of 3°C, although very localized events may reach 7°–8°C. An analysis of multiple years of diurnal warming over the global ice-free oceans indicates that heat fluxes determined by using the predawn sea surface temperature can differ by more than 100% in localized regions over those in which the sea surface temperature is allowed to fluctuate on a diurnal basis. A comparison of flux climatologies produced by these two analyses demonstrates that significant portions of the tropical oceans experience differences on a yearly average of up to 10 W m−2. Regions with the highest climatological differences include the Arabian Sea and the Bay of Bengal, as well as the equatorial western and eastern Pacific Ocean, the Gulf of Mexico, and the western coasts of Central America and North Africa. Globally the difference is on average 4.45 W m−2. The difference in the evaporation rate globally is on the order of 4% of the total ocean–atmosphere evaporation. Although the instantaneous, year-to-year, and seasonal fluctuations in various locations can be substantial, the global average differs by less than 0.1 W m−2 throughout the entire 10-yr time period. A global heat budget that uses atmospheric datasets containing diurnal variability but a sea surface temperature that has removed this signal may be underestimating the flux to the atmosphere by a fairly constant value.


2020 ◽  
Vol 148 (2) ◽  
pp. 637-654
Author(s):  
Sergey Frolov ◽  
William Campbell ◽  
Benjamin Ruston ◽  
Craig H. Bishop ◽  
David Kuhl ◽  
...  

Abstract Coupled data assimilation (DA) provides a consistent framework for assimilating satellite observations that are sensitive to several components of the Earth system. In this paper, we focus on low-peaking infrared satellite channels that are sensitive to the lower atmosphere and Earth surface temperature (EST) over both ocean and land. Our atmospheric hybrid-4DVAR system [the Navy Global Environmental Model (NAVGEM)] is extended to include the following: 1) variability in the sea surface temperature (both diurnal variability and climatological perturbations to the ensemble members), 2) the coupled Jacobians of the radiative transfer model for the infrared sensors, and 3) the coupled covariances between the EST and the atmosphere. Our coupling approach is found to improve forecast accuracy and to provide corrections to the EST that are in balance with the atmospheric analysis. The largest impact of the coupling is found on near-surface atmospheric temperature and humidity in the tropics, but the impact extends all the way to the stratosphere. The role of each coupling element on the performance of the global atmospheric circulation model is investigated. Inclusion of variability in the sea surface temperature has the strongest positive impact on the forecast quality. Additional inclusion of the coupled Jacobian and ensemble-based coupled covariances led to further improvements in scores and to modification of the corrections to the ocean boundary layer. Coupled DA had significant impact on latent and sensible heat fluxes over land, locations of western boundary currents, and along the ice edge.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 454
Author(s):  
Andrew R. Jakovlev ◽  
Sergei P. Smyshlyaev ◽  
Vener Y. Galin

The influence of sea-surface temperature (SST) on the lower troposphere and lower stratosphere temperature in the tropical, middle, and polar latitudes is studied for 1980–2019 based on the MERRA2, ERA5, and Met Office reanalysis data, and numerical modeling with a chemistry-climate model (CCM) of the lower and middle atmosphere. The variability of SST is analyzed according to Met Office and ERA5 data, while the variability of atmospheric temperature is investigated according to MERRA2 and ERA5 data. Analysis of sea surface temperature trends based on reanalysis data revealed that a significant positive SST trend of about 0.1 degrees per decade is observed over the globe. In the middle latitudes of the Northern Hemisphere, the trend (about 0.2 degrees per decade) is 2 times higher than the global average, and 5 times higher than in the Southern Hemisphere (about 0.04 degrees per decade). At polar latitudes, opposite SST trends are observed in the Arctic (positive) and Antarctic (negative). The impact of the El Niño Southern Oscillation phenomenon on the temperature of the lower and middle atmosphere in the middle and polar latitudes of the Northern and Southern Hemispheres is discussed. To assess the relative influence of SST, CO2, and other greenhouse gases’ variability on the temperature of the lower troposphere and lower stratosphere, numerical calculations with a CCM were performed for several scenarios of accounting for the SST and carbon dioxide variability. The results of numerical experiments with a CCM demonstrated that the influence of SST prevails in the troposphere, while for the stratosphere, an increase in the CO2 content plays the most important role.


2018 ◽  
Vol 53 (1-2) ◽  
pp. 173-192 ◽  
Author(s):  
Wei-Ching Hsu ◽  
Christina M. Patricola ◽  
Ping Chang

Respuestas ◽  
2020 ◽  
Vol 25 (3) ◽  
Author(s):  
Juan Guillermo Popayán-Hernández ◽  
Orlando Zúñiga-Escobar

This document estimated the behavior of the CO2 flux in the San Andrés Islas maritime for the first half of 2019. This behavior was established based on the thermodynamic relationship between the sea surface temperature, the partial pressures of CO2 in the atmosphere and the water column, this from data derived from remote sensors. The satellite data were derived from the MODIS aqua sensors and the MERRA model for sea surface temperature and wind speed respectively. Satellite images were obtained from NASA databases, subsequently processed and specialized in ArcGis 10.1. Finally, the behavior of the CO2 flux is shown for the San Andrés Islas maritime, finding that it does not have a tendency to capture CO2, so acidification processes are discarded for the selected study period.


Author(s):  
R. Shunmugapandi ◽  
S. Gedam ◽  
A. B. Inamdar

Abstract. Ocean surface phytoplankton responses to the tropical cyclone (TC)/storms have been extensively studied using satellite observations by aggregating the data into a weekly or bi-weekly composite. The reason behind is the significant limitations found in the satellite-based observation is the missing of valid data due to cloud cover, especially at the time of cyclone track passage. The data loss during the cyclone is found to be a significant barrier to efficiently investigate the response of chl-a and SST during cyclone track passage. Therefore it is necessary to rectify the above limitation to effectively study the impact of TC on the chlorophyll-a concentration (chl-a) and the sea surface temperature (SST) to achieve a complete understanding of their response to the TC prevailed in the Arabian Sea. Intending to resolve the limitation mentioned above, this study aims to reconstruct the MODIS-Aqua chl-a, and SST data using Data Interpolating Empirical Orthogonal Function (DINEOF) for all the 31 cyclonic events occurred in the Arabian Sea during 2003-2018 (16 years). Reconstructed satellite retrieved data covering all the cyclonic events were further used to investigate the chl-a and SST dynamics during TC. From the results, the exciting fact has been identified that only two TC over the eastern-AS were able to induce phytoplankton bloom. On investigating this scenario using sea surface temperature, it was disclosed that the availability of nutrients decides the suitable condition for the phytoplankton to proliferate in the surface ocean. Relevant to the precedent criterion, the results witnessed that the 2 TC (Phyan and Ockhi cyclone) prevailed in the eastern AS invoked a suitable condition for phytoplankton bloom. Other TC found to be less provocative either due to less intensity, origination region or the unsuitable condition. Thereby, gap-free reconstructed daily satellite-derived data efficiently investigates the response of bio-geophysical parameters during cyclonic events. Moreover, this study sensitised that though several TC strikes the AS, only two could impact phytoplankton productivity and SST found to highly consistent with the chl-a variability during the cyclone passage.


2021 ◽  
Vol 4 ◽  
pp. 99-111
Author(s):  
Y.A Pavroz . ◽  

An attempt is made to develop a method for long-term forecasting of the ice breakup time for the Vyatka River basin, to identify the impact of the distribution of sea surface temperature and geopotential height in the informative regions at the levels H100 and H500 over the Northern Hemisphere on the river ice breakup. The location and boundaries of the informative regions in the fields of H100 and H500 were revealed by the discriminant analysis, the EOF expansion coefficients of the fields of anomalies of monthly mean values of H100 and H500 for January and February and the anomalies of monthly mean sea surface temperature in the North Atlantic and Northwest Pacific were used as potential predictors. The stepwise regression analysis allowed deriving good and satisfactory (S/σ = 0.45–0.73) complex prognostic equations for forecasting the ice breakup time for the Vyatka River basin. The essential influence of H100 and H500 geopotential height fields and the spatial distribution of sea surface temperature anomalies in the North Atlantic and Northwest Pacific in January and February on the river ice breakup time is revealed. It is proposed to improve the method by considering the impact of air temperature, maximum ice thickness per winter, and other indirect characteristics on the processes of river ice breakup in the Vyatka River basin. Keywords: ice regime, long-range forecast, river ice breakup, expansion coefficients, geopotential height fields, spring ice phenomena, energy-active zones of the oceans, complex prognostic equation


2020 ◽  
Vol 12 (5) ◽  
pp. 825 ◽  
Author(s):  
Christos Stathopoulos ◽  
Platon Patlakas ◽  
Christos Tsalis ◽  
George Kallos

Air–sea interface processes are highly associated with the evolution and intensity of marine-developed storms. Specifically, in the Mediterranean Sea, the air–ocean temperature deviations have a profound role during the several stages of Mediterranean cyclonic events. Subsequently, this enhances the need for better knowledge and representation of the sea surface temperature (SST). In this work, an analysis of the impact and uncertainty of the SST from different well-known datasets on the life-cycle of Mediterranean cyclones is attempted. Daily SST from the Real Time Global SST (RTG_SST) and hourly SST fields from the Operational SST and Sea Ice Ocean Analysis (OSTIA) and the NEMO ocean circulation model are implemented in the RAMS/ICLAMS-WAM coupled modeling system. For the needs of the study, the Mediterranean cyclones Trixi, Numa, and Zorbas were selected. Numerical experiments covered all stages of their life-cycles (five to seven days). Model results have been analyzed in terms of storm tracks and intensities, cyclonic structural characteristics, and derived heat fluxes. Remote sensing data from the Integrated Multi-satellitE Retrievals (IMERG) for Global Precipitation Measurements (GPM), Blended Sea Winds, and JASON altimetry missions were employed for a qualitative and quantitative comparison of modeled results in precipitation, maximum surface wind speed, and wave height. Spatiotemporal deviations in the SST forcing rather than significant differences in the maximum/minimum SST values, seem to mainly contribute to the differences between the model results. Considerable deviations emerged in the resulting heat fluxes, while the most important differences were found in precipitation exhibiting spatial and intensity variations reaching 100 mm. The employment of widely used products is shown to result in different outcomes and this point should be taken into consideration in forecasting and early warning systems.


2020 ◽  
Vol 54 (11-12) ◽  
pp. 4733-4757 ◽  
Author(s):  
Alba de la Vara ◽  
William Cabos ◽  
Dmitry V. Sein ◽  
Dmitry Sidorenko ◽  
Nikolay V. Koldunov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document