scholarly journals IASI measurements of tropospheric ozone over Chinese megacities: Beijing, Shanghai, and Hong Kong

2009 ◽  
Vol 9 (6) ◽  
pp. 23103-23140
Author(s):  
G. Dufour ◽  
M. Eremenko ◽  
J. Orphal ◽  
J.-M. Flaud

Abstract. IASI observations of tropospheric ozone over Beijing, Shanghai and Hong Kong during one year have been analysed, demonstrating the capability of space-borne infrared nadir measurements to probe both seasonal and daily variations of lower tropospheric ozone around megacities on the regional scale. The monthly variations of lower tropospheric ozone retrieved from IASI show the influence of the Asian summer monsoon that brings clean air masses from the Pacific during summer. They exhibit indeed a sharp ozone maximum in late spring and early summer (May–June) followed by a summer minimum. The time periods and the intensities of the maxima and of the decreases are latitude-dependent: they are more pronounced in Hong Kong and Shanghai than in Beijing. Moreover, IASI provides the opportunity to follow the spatial variations of ozone over the surroundings of each megacity as well as its daily variability. We show indeed that the large lower tropospheric ozone amounts observed with IASI are consistent with the highest population density distribution in each region, thus suggesting the anthropogenic origin of the large ozone amounts observed. Finally an analysis of the mean daily ozone profiles over each region for selected periods with high ozone events shows that the high ozone amounts observed during winter are likely related to descents of ozone-rich air from the stratosphere whereas in spring and summer the tropospheric ozone is likely enhanced by photochemical production in polluted areas and/or in fire plumes.

2010 ◽  
Vol 10 (8) ◽  
pp. 3787-3801 ◽  
Author(s):  
G. Dufour ◽  
M. Eremenko ◽  
J. Orphal ◽  
J.-M. Flaud

Abstract. IASI observations of tropospheric ozone over the Beijing, Shanghai and Hong Kong areas during one year (2008) have been analysed, demonstrating the capability of space-borne infrared nadir measurements to probe seasonal and even day-to-day variations of lower tropospheric ozone (0–6 km partial columns) on the regional scale of highly populated areas. The monthly variations of lower tropospheric ozone retrieved from IASI clearly show the influence of the Asian summer monsoon that brings clean air masses from the Pacific during summer. They exhibit indeed a sharp ozone maximum in late spring and early summer (May–June) followed by a summer minimum. The time periods and the intensities of the maxima and of the decreases are latitude-dependent: they are more pronounced in Hong Kong and Shanghai than in Beijing. Moreover, IASI provides the opportunity to follow the spatial variations of ozone over the surroundings of each megacity as well as its daily variability. We show here that the large lower tropospheric ozone amounts (0–6 km partial columns) observed with IASI are mainly downwind the highest populated areas in each region, thus possibly suggesting the anthropogenic origin of the large ozone amounts observed. Finally, an analysis of the mean ozone profiles over each region – for selected days with high ozone events – in association with the analysis of the meteorological situation shows that the high ozone amounts observed during winter are likely related to descents of ozone-rich air from the stratosphere, whereas in spring and summer the tropospheric ozone is likely enhanced by photochemical production in polluted areas and/or in air masses from fire plumes.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1497-P
Author(s):  
HONGJIANG WU ◽  
AIMIN YANG ◽  
ERIC S. LAU ◽  
RONALD C. MA ◽  
ALICE P. KONG ◽  
...  

Author(s):  
Philip E. Bett ◽  
Gill M. Martin ◽  
Nick Dunstone ◽  
Adam A. Scaife ◽  
Hazel E. Thornton ◽  
...  

AbstractSeasonal forecasts for Yangtze River basin rainfall in June, May–June–July (MJJ), and June–July–August (JJA) 2020 are presented, based on the Met Office GloSea5 system. The three-month forecasts are based on dynamical predictions of an East Asian Summer Monsoon (EASM) index, which is transformed into regional-mean rainfall through linear regression. The June rainfall forecasts for the middle/lower Yangtze River basin are based on linear regression of precipitation. The forecasts verify well in terms of giving strong, consistent predictions of above-average rainfall at lead times of at least three months. However, the Yangtze region was subject to exceptionally heavy rainfall throughout the summer period, leading to observed values that lie outside the 95% prediction intervals of the three-month forecasts. The forecasts presented here are consistent with other studies of the 2020 EASM rainfall, whereby the enhanced mei-yu front in early summer is skillfully forecast, but the impact of midlatitude drivers enhancing the rainfall in later summer is not captured. This case study demonstrates both the utility of probabilistic seasonal forecasts for the Yangtze region and the potential limitations in anticipating complex extreme events driven by a combination of coincident factors.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuhei Takaya ◽  
Yu Kosaka ◽  
Masahiro Watanabe ◽  
Shuhei Maeda

AbstractThe interannual variability of the Asian summer monsoon has significant impacts on Asian society. Advances in climate modelling have enabled us to make useful predictions of the seasonal Asian summer monsoon up to approximately half a year ahead, but long-range predictions remain challenging. Here, using a 52-member large ensemble hindcast experiment spanning 1980–2016, we show that a state-of-the-art climate model can predict the Asian summer monsoon and associated summer tropical cyclone activity more than one year ahead. The key to this long-range prediction is successfully simulating El Niño-Southern Oscillation evolution and realistically representing the subsequent atmosphere–ocean response in the Indian Ocean–western North Pacific in the second boreal summer of the prediction. A large ensemble size is also important for achieving a useful prediction skill, with a margin for further improvement by an even larger ensemble.


Author(s):  
Zhiheng Liao ◽  
Zhenhao Ling ◽  
Meng Gao ◽  
Jiaren Sun ◽  
Wei Zhao ◽  
...  

1994 ◽  
Vol 53 (1) ◽  
pp. 124-131 ◽  
Author(s):  
Terutomo Ozawa

Structural upgrading and industrial dynamismin Pacific Asia—initially Japan, then the Asian NIEs (Newly Industrializing Economies: South Korea, Taiwan, Hong Kong, and Singapore) following closely behind, and most recently, ASEAN 4 (Thailand, Malaysia, Indonesia, and the Philippines)—have been unprecedentedly phenomenal. This regional supergrowth in industrial activities has become the center of attention, but the evolving changes in the political systems and societal structures of the Pacific Asian nations have been, no doubt, equally important, although rather subtle and not so dramatic in appearance.


2016 ◽  
Author(s):  
Gerard Ancellet ◽  
Nikos Daskalakis ◽  
Jean Christophe Raut ◽  
Boris Quennehen ◽  
François Ravetta ◽  
...  

Abstract. The goal of the paper are to: (1) present tropospheric ozone (O3) climatologies in summer 2008 based on a large amount of measurements, during the International Polar Year when the Polar Study using Aircraft, Remote Sensing, Surface Measurements, and Models of Climate Chemistry, Aerosols, and Transport (POLARCAT) campaigns were conducted (2) investigate the processes that determine O3 concentrations in two different regions (Canada and Greenland) that were thoroughly studied using measurements from 3 aircraft and 7 ozonesonde stations. This paper provides an integrated analysis of these observations and the discussion of the latitudinal and vertical variability of tropospheric ozone north of 55° N during this period is performed using a regional model (WFR-Chem). Ozone, CO and potential vorticity (PV) distributions are extracted from the simulation at the measurement locations. The model is able to reproduce the O3 latitudinal and vertical variability but a negative O3 bias of 6–15 ppbv is found in the free troposphere over 4 km, especially over Canada. Ozone average concentrations are of the order of 65 ppbv at altitudes above 4 km both over Canada and Greenland, while they are less than 50 ppbv in the lower troposphere. The relative influence of stratosphere-troposphere exchange (STE) and of ozone production related to the local biomass burning (BB) emissions is discussed using differences between average values of O3, CO and PV for Southern and Northern Canada or Greenland and two vertical ranges in the troposphere: 0–4 km and 4–8 km. For Canada, the model CO distribution and the weak correlation (< 30 %) of O3 and PV suggests that stratosphere-troposphere exchange (STE) is not the major contribution to average tropospheric ozone at latitudes less than 70° N, due to the fact that local biomass burning (BB) emissions were significant during the 2008 summer period. Conversely over Greenland, significant STE is found according to the better O3 versus PV correlation (> 40 %) and the higher 75th PV percentile. A weak negative latitudinal summer ozone gradient −6 to −8 ppbv is found over Canada in the mid troposphere between 4 and 8 km. This is attributed to an efficient O3 photochemical production due to the BB emissions at latitudes less than 65° N, while STE contribution is more homogeneous in the latitude range 55° N to 70° N. A positive ozone latitudinal gradient of 12 ppbv is observed in the same altitude range over Greenland not because of an increasing latitudinal influence of STE, but because of different long range transport from multiple mid-latitude sources (North America, Europe and even Asia for latitudes higher than 77° N).


2018 ◽  
Vol 22 (6) ◽  
pp. 3493-3513 ◽  
Author(s):  
Karin Mostbauer ◽  
Roland Kaitna ◽  
David Prenner ◽  
Markus Hrachowitz

Abstract. Debris flows represent frequent hazards in mountain regions. Though significant effort has been made to predict such events, the trigger conditions as well as the hydrologic disposition of a watershed at the time of debris flow occurrence are not well understood. Traditional intensity-duration threshold techniques to establish trigger conditions generally do not account for distinct influences of rainfall, snowmelt, and antecedent moisture. To improve our knowledge on the connection between debris flow initiation and the hydrologic system at a regional scale, this study explores the use of a semi-distributed conceptual rainfall–runoff model, linking different system variables such as soil moisture, snowmelt, or runoff with documented debris flow events in the inner Pitztal watershed, Austria. The model was run on a daily basis between 1953 and 2012. Analysing a range of modelled system state and flux variables at days on which debris flows occurred, three distinct dominant trigger mechanisms could be clearly identified. While the results suggest that for 68 % (17 out of 25) of the observed debris flow events during the study period high-intensity rainfall was the dominant trigger, snowmelt was identified as the dominant trigger for 24 % (6 out of 25) of the observed debris flow events. In addition, 8 % (2 out of 25) of the debris flow events could be attributed to the combined effects of low-intensity, long-lasting rainfall and transient storage of this water, causing elevated antecedent soil moisture conditions. The results also suggest a relatively clear temporal separation between the distinct trigger mechanisms, with high-intensity rainfall as a trigger being limited to mid- and late summer. The dominant trigger in late spring/early summer is snowmelt. Based on the discrimination between different modelled system states and fluxes and, more specifically, their temporally varying importance relative to each other, this exploratory study demonstrates that already the use of a relatively simple hydrological model can prove useful to gain some more insight into the importance of distinct debris flow trigger mechanisms. This highlights in particular the relevance of snowmelt contributions and the switch between mechanisms during early to mid-summer in snow-dominated systems.


2009 ◽  
Vol 9 (14) ◽  
pp. 5281-5297 ◽  
Author(s):  
I. Pison ◽  
P. Bousquet ◽  
F. Chevallier ◽  
S. Szopa ◽  
D. Hauglustaine

Abstract. In order to study the spatial and temporal variations of the emissions of greenhouse gases and of their precursors, we developed a data assimilation system and applied it to infer emissions of CH4, CO and H2 for one year. It is based on an atmospheric chemical transport model and on a simplified scheme for the oxidation chain of hydrocarbons, including methane, formaldehyde, carbon monoxide and molecular hydrogen together with methyl chloroform. The methodology is exposed and a first attempt at evaluating the inverted fluxes is made. Inversions of the emission fluxes of CO, CH4 and H2 and concentrations of HCHO and OH were performed for the year 2004, using surface concentration measurements of CO, CH4, H2 and CH3CCl3 as constraints. Independent data from ship and aircraft measurements and satellite retrievals are used to evaluate the results. The total emitted mass of CO is 30% higher after the inversion, due to increased fluxes by up to 35% in the Northern Hemisphere. The spatial distribution of emissions of CH4 is modified by a decrease of fluxes in boreal areas up to 60%. The comparison between mono- and multi-species inversions shows that the results are close at a global scale but may significantly differ at a regional scale because of the interactions between the various tracers during the inversion.


Sign in / Sign up

Export Citation Format

Share Document