scholarly journals New photolytic converter for improving aircraft measurements of NO<sub>2</sub> via chemiluminescence

2021 ◽  
Author(s):  
Clara M. Nussbaumer ◽  
Uwe Parchatka ◽  
Ivan Tadic ◽  
Birger Bohn ◽  
Daniel Marno ◽  
...  

Abstract. Nitrogen oxides (NOx ≡ NO + NO2) are centrally involved in the photochemical processes taking place in the earth’s atmosphere. Measurements of NO2, particularly in remote areas where concentrations are of the order of pptv, are still a challenge and subject to extensive research. In this study, we present NO2 measurements via photolysis-chemiluminescence during the research aircraft campaign CAFE Africa (Chemistry of the Atmosphere – Field Experiment in Africa) 2018 around Cabo Verde as well as the results of laboratory experiments to characterize the photolytic converter used. We identify a memory effect within the conventional photolytic converter associated with high NO concentrations and rapidly changing water vapor concentrations, accompanying changes in altitude during aircraft measurements, which is due to the porous structure of the converter material. We test and characterize an alternative photolytic converter made from quartz glass which improves the reliability of NO2 measurements in laboratory and field studies.

2021 ◽  
Vol 9 (2) ◽  
pp. 142
Author(s):  
Annalisa De Leo ◽  
Laura Cutroneo ◽  
Damien Sous ◽  
Alessandro Stocchino

Microplastic (MP) debris is recognized to be one of the most serious threats to marine environments. They are found in all seas and oceanic basins worldwide, even in the most remote areas. This is further proof that the transport of MPs is very efficient. In the present study, we focus our attention on MPs’ transport owing to the Stokes drift generated by sea waves. Recent studies have shown that the interaction between heavy particles and Stokes drift leads to unexpected phenomena mostly related to inertial effects. We perform a series of laboratory experiments with the aim to directly measure MPs’ trajectories under different wave conditions. The main objective is to quantify the inertial effect and, ultimately, suggest a new analytical formulation for the net settling velocity. The latter formula might be implemented in a larger scale transport model in order to account for inertial effects in a simplified approach.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1554
Author(s):  
Chao Liu ◽  
Zhao-Jun Bu ◽  
Azim Mallik ◽  
Yong-Da Chen ◽  
Xue-Feng Hu ◽  
...  

In a natural environment, plants usually interact with their neighbors predominantly through resource competition, allelopathy, and facilitation. The occurrence of the positive effect of allelopathy between peat mosses (Sphagnum L.) is rare, but it has been observed in a field experiment. It is unclear whether the stability of the water table level in peat induces positive vs. negative effects of allelopathy and how that is related to phenolic allelochemical production in Sphagnum. Based on field experiment data, we established a laboratory experiment with three neighborhood treatments to measure inter-specific interactions between Sphagnum angustifolium (Russ.) C. Jens and Sphagnum magellanicum Brid. We found that the two species were strongly suppressed by the allelopathic effects of each other. S. magellanicum allelopathically facilitated S. angustifolium in the field but inhibited it in the laboratory, and relative allelopathy intensity appeared to be positively related to the content of released phenolics. We conclude that the interaction type and intensity between plants are dependent on environmental conditions. The concentration of phenolics alone may not explain the type and relative intensity of allelopathy. Carefully designed combined field and laboratory experiments are necessary to reveal the mechanism of species interactions in natural communities.


Web Ecology ◽  
2018 ◽  
Vol 18 (1) ◽  
pp. 81-89 ◽  
Author(s):  
Daniel Acquah-Lamptey ◽  
Roland Brandl

Abstract. Laboratory experiments with food-deprived larvae of odonates suggested that these predators may have the potential to control mosquito populations. However, it remains unclear whether larvae of odonates co-occur with mosquito larvae in the field and whether larvae of odonates reduce the density of mosquito larvae in the field. We exposed 35 water-filled concrete containers in the field in shady and sunny conditions. Some of these containers were partially covered (for simplicity called closed containers, allowing only mosquitoes to lay eggs), whereas others remained open. The density of mosquito larvae was higher in shaded containers and in closed containers. The multivoltine odonate Bradinopyga strachani colonized open containers and the occurrence of these predators resulted in a clear reduction of the mosquito population. Our results indicate that increasing the colonization of water bodies by Bradinopyga strachani is a promising strategy for controlling populations of mosquitoes.


2013 ◽  
Vol 6 (5) ◽  
pp. 9263-9295
Author(s):  
P. Boylan ◽  
D. Helmig ◽  
J.-H. Park

Abstract. Laboratory experiments were conducted to investigate the effects of water vapor on the reaction of nitric oxide with ozone in a chemiluminescence instrument used for fast response and high sensitivity detection of atmospheric ozone. Water vapor was introduced into a constant level ozone standard and both ozone and water vapor signals were recorded at 10 Hz. The presence of water vapor was found to reduce, i.e. quench the ozone signal. A correction factor was determined to be 4.15 ± 0.14 × 10−3, which corresponds to a 4.15% increase in the measured ozone signal per 10 mmol mol−1 co-sampled water vapor. An ozone-inert water vapor permeable membrane (Nafion dryer) was installed in the sampling line and was shown to remove the bulk of the water vapor mole fraction in the sample air. At water vapor mole fractions above 25 mmol mol−1, the Nafion dryer removed over 75% of the water vapor in the sample. This reduced the ozone signal correction from over 11% to less than 2.5%. The Nafion dryer was highly effective at reducing the fast fluctuations of the water vapor signal (more than 97%) while leaving the ozone signal unaffected, which is a crucial improvement for minimizing the interference of water vapor fluxes on the ozone flux determination by the eddy covariance technique.


1981 ◽  
Vol 45 (4) ◽  
pp. 13-23 ◽  
Author(s):  
Dipankar Chakravarti ◽  
Andrew Mitchell ◽  
Richard Staelin

This paper presents a comparative analysis of the findings of two field studies and three recent laboratory experiments that assessed the efficacy of judgment based models in aiding marketing decision making. This analysis indicates factors that may affect the effectiveness of these models. The implications of the findings for users of judgment based marketing decision models as well as model builders are discussed, and suggestions are made for future research to improve the models’ effectiveness.


2018 ◽  
Vol 18 (22) ◽  
pp. 16729-16745 ◽  
Author(s):  
Stefan Kaufmann ◽  
Christiane Voigt ◽  
Romy Heller ◽  
Tina Jurkat-Witschas ◽  
Martina Krämer ◽  
...  

Abstract. Accurate measurement of water vapor in the climate-sensitive region near the tropopause is very challenging. Unexplained systematic discrepancies between measurements at low water vapor mixing ratios made by different instruments on airborne platforms have limited our ability to adequately address a number of relevant scientific questions on the humidity distribution, cloud formation and climate impact in that region. Therefore, during the past decade, the scientific community has undertaken substantial efforts to understand these discrepancies and improve the quality of water vapor measurements. This study presents a comprehensive intercomparison of airborne state-of-the-art in situ hygrometers deployed on board the DLR (German Aerospace Center) research aircraft HALO (High Altitude and LOng Range Research Aircraft) during the Midlatitude CIRRUS (ML-CIRRUS) campaign conducted in 2014 over central Europe. The instrument intercomparison shows that the hygrometer measurements agree within their combined accuracy (±10 % to 15 %, depending on the humidity regime); total mean values agree within 2.5 %. However, systematic differences on the order of 10 % and up to a maximum of 15 % are found for mixing ratios below 10 parts per million (ppm) H2O. A comparison of relative humidity within cirrus clouds does not indicate a systematic instrument bias in either water vapor or temperature measurements in the upper troposphere. Furthermore, in situ measurements are compared to model data from the European Centre for Medium-Range Weather Forecasts (ECMWF) which are interpolated along the ML-CIRRUS flight tracks. We find a mean agreement within ±10 % throughout the troposphere and a significant wet bias in the model on the order of 100 % to 150 % in the stratosphere close to the tropopause. Consistent with previous studies, this analysis indicates that the model deficit is mainly caused by too weak of a humidity gradient at the tropopause.


2015 ◽  
Vol 15 (7) ◽  
pp. 3831-3850 ◽  
Author(s):  
L. Marelle ◽  
J.-C. Raut ◽  
J. L. Thomas ◽  
K. S. Law ◽  
B. Quennehen ◽  
...  

Abstract. During the POLARCAT-France airborne campaign in April 2008, pollution originating from anthropogenic and biomass burning emissions was measured in the European Arctic. We compare these aircraft measurements with simulations using the WRF-Chem model to investigate model representation of aerosols transported from Europe to the Arctic. Modeled PM2.5 is evaluated using European Monitoring and Evaluation Programme (EMEP) measurements in source regions and POLARCAT aircraft measurements in the Scandinavian Arctic. Total PM2.5 agrees well with the measurements, although the model overestimates nitrate and underestimates organic carbon in source regions. Using WRF-Chem in combination with the Lagrangian model FLEXPART-WRF, we find that during the campaign the research aircraft sampled two different types of European plumes: mixed anthropogenic and fire plumes from eastern Europe and Russia transported below 2 km, and anthropogenic plumes from central Europe uplifted by warm conveyor belt circulations to 5–6 km. Both modeled plume types had undergone significant wet scavenging (> 50% PM10) during transport. Modeled aerosol vertical distributions and optical properties below the aircraft are evaluated in the Arctic using airborne lidar measurements. Model results show that the pollution event transported aerosols into the Arctic (> 66.6° N) for a 4-day period. During this 4-day period, biomass burning emissions have the strongest influence on concentrations between 2.5 and 3 km altitudes, while European anthropogenic emissions influence aerosols at both lower (~ 1.5 km) and higher altitudes (~ 4.5 km). As a proportion of PM2.5, modeled black carbon and SO4= concentrations are more enhanced near the surface in anthropogenic plumes. The European plumes sampled during the POLARCAT-France campaign were transported over the region of springtime snow cover in northern Scandinavia, where they had a significant local atmospheric warming effect. We find that, during this transport event, the average modeled top-of-atmosphere (TOA) shortwave direct and semi-direct radiative effect (DSRE) north of 60° N over snow and ice-covered surfaces reaches +0.58 W m−2, peaking at +3.3 W m−2 at noon over Scandinavia and Finland.


Sign in / Sign up

Export Citation Format

Share Document