scholarly journals Design of RF MEMS based switch matrix for space applications

2013 ◽  
Vol 11 ◽  
pp. 143-152 ◽  
Author(s):  
S. Di Nardo ◽  
P. Farinelli ◽  
T. Kim ◽  
R. Marcelli ◽  
B. Margesin ◽  
...  

Abstract. RF MEMS based switch matrices have several advantages compared to the mechanical or solid-state switch based ones for space applications. They are compact, light and less lossy with a high linearity up to high frequency. In this work, a 12 × 12 switch matrix with RF MEMS and LTCC technologies is presented based on the planar Beneš network. The simulated performance of the 12 × 12 switch matrix is below −12 dB IL (Insertion Loss) up to C band and −15 dB RL (Return Loss) up to Ku band. Moreover, it has a good isolation better than −50 dB. A 4 × 4 switch matrix with the same design process and technologies is fabricated and measured to verify the 12 × 12 switch matrix design process. The measured performance agrees very well to the simulations.

2013 ◽  
Vol 385-386 ◽  
pp. 1292-1295
Author(s):  
Xu Han ◽  
Jian Hua Xu

A planar power divider operating over the whole Ku-band is presented. The proposed device utilizes a T-microstrip junction combined with defected ground structure and an elliptical patch at the centre of the T-junction. An isolation resistor is connected across the slotted ground plane. The simulated results of the divider show equal power split, insertion loss is less than 0.3dB, return loss of all ports are better than 15dB, and isolation is better than 15dB over the whole Ku-band.


2018 ◽  
Vol 32 (30) ◽  
pp. 1850362
Author(s):  
Lei Han ◽  
Shen Xiao

In this paper, design, fabrication and measurements of a novel single-pole-double-throw three-state RF MEMS switch based on silicon substrate are presented. The RF MEMS switch consists of two UV-shaped beam push–pull thermal actuators which have three states of ON, OFF and Deep-OFF by using current actuation. When the switch is at Deep-OFF state, it can provide a higher isolation. The switch is fabricated by MetalMUMPs process. The measurement results show that, to the proposed single-pole-double-throw RF MEMS switch, when Switch I is at the ON state and Switch II is at the OFF state, the return loss is better than −16 dB, the insertion loss of Port1 and Port2 is less than −0.9 dB and the isolation of Port3 and Port1 is better than −22 dB at the frequency range from 8 GHz to 12 GHz. When Switch I is at the ON state and the actuator of Switch II is pulled back, which is called the Deep-OFF state, the return loss of Port1 is better than −15.5 dB, the insertion loss of Port1 and Port2 is better than −0.8 dB, and the isolation of Port3 and Port1 is better than −23.5 dB can be achieved at the frequency range from 8 GHz to 12 GHz.


2011 ◽  
Vol 403-408 ◽  
pp. 5330-5334
Author(s):  
Anesh K. Sharma ◽  
Ashu K. Gautam ◽  
D.V.K. Sastry ◽  
S.G. Singh

As the requirement for the low loss phase shifter increases, so does the development of RF MEMS as a solution. This paper presents the design & simulation of Switched line MEMS phase shifter for Ku band using GaAs substrate. The phase shift can be achieved by varying the lengths in delay path to the reference path for the same phase velocity. The electromagnetic & electromechanical simulations were carried out with various structural parameters to optimize the design. The novelties like low insertion loss, low actuation voltage with distributed actuation pads for DC and RF are used to make the design unique. The EM simulations are carried out using 3D simulator HFSS and a phase shift of 172.6 deg./dB for a total Phase shift of 348.75deg was achieved with return loss of 15.5dB over a frequency band from 16-18 GHz and a phase shift error less than ±2 degree in the 32 states. The electromechanical simulations are carried to achieve the low actuation voltage of 15.3V. These parameters make these suitable for the Phased array applications [1, 2].


2014 ◽  
Vol 577 ◽  
pp. 782-785 ◽  
Author(s):  
Yong Xia Liu ◽  
Jian Chang Du ◽  
Lai Yun Ji

In this paper, a 14-pole HTS filter is successfully designed and developed, which based on the reflected group delay method. The principle, design process, simulation are demonstrated. The filter is fabricated on a MgO substrate with double-sided DyBa2Cu3O7HTS thin films. The filter’s center frequency is 813.5MHz with a bandwidth of 15MHz, the return loss is better than 20dB.


Author(s):  
Maham Kamil Naji ◽  
Alaa Desher Farhood ◽  
Adnan Hussein Ali

<span>In this paper, a new type of Radio Frequency Micro-Electro-Mechanical System (RF-MEMS) shunt capacitive switch is designed and studied. RF MEMS switch has a number of advantages in a modern telecommunication system such as low power consumption, easy to fabricate and power handling capacity at radio frequency. At high frequency applications, this switch shows very superior performance due to which it now became one of the key elements for RF application. In this proposed design, an innovative type of MEMS switch is designed. The MEMS switch structure consists of substrate, co-planar waveguide (CPW), dielectric material and a metallic bridge. The proposed MEMS switch has a dimension of 508 µm × 620 µm with a height of 500 µm. The substrate used is GaAs material. The relative permittivity of the substrate is 12.9. This proposed MEMS switch is designed and simulated in both UP (ON) state and DOWN (OFF) state. The proposed RF-MEMS switch is designed and simulated using Ansoft High frequency structure simulator (HFSS) electromagnetic simulator. The simulated result shows better performance parameters such as return loss ( &lt;-10 dB)  and insertion loss ( &gt; -0.5 dB) in UP state, whereas return loss ( &gt; -0.5 dB) and isolation (&lt;-10 dB) in DOWN state. This switch has good isolation characteristics of – 43 dB at 27 GHz frequency.</span>


1987 ◽  
Vol 65 (8) ◽  
pp. 850-855 ◽  
Author(s):  
G. Rabjohn ◽  
J. Wolczanski ◽  
R. Surridge

High-speed digital and microwave circuits have traditionally been tested by dicing wafers and mounting chips into high-frequency test carriers. This process is expensive, time consuming, and destructive. Methods of high-frequency measurement at the wafer stage are very desirable; for example, for wafer mapping, but conventional needle probes cannot be used because of their parasitics. New probe structures based on fine coaxial lines, vertically mounted microstrip lines, and tapered coplanar lines have been reported.For measurement at microwave frequencies (2–20 GHz), we have developed a geometry of a coplanar wave-guide probe that gives better than 10 dB return loss. Individual monolithic components can easily be measured and modelled for inclusion in a circuit simulation.For the measurement of digital circuits, especially those requiring several high-speed signal lines, we have used proprietary microstrip probes. Satisfactory operation up to about 2 Gbit∙s−1 has been observed, the upper bit rate being restricted by the inductance of the probe tip.Microwave-frequency and time-domain measurements of both types of probes have been made and will be discussed. Additionally, examples of the use of these probes for on-wafer measurements of digital and analog circuits will be given.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Jahnavi Kachhia ◽  
Amit Patel ◽  
Alpesh Vala ◽  
Romil Patel ◽  
Keyur Mahant

This paper represents new generation of slotted antennas for satellite application where the loss can be compensated in terms of power or gain of antenna. First option is very crucial because it totally depends on size of satellite so we have proposed the high gain antenna creating number of rectangular, trapezoidal, and I shape slots in logarithm size in Substrate Integrated Waveguide (SIW) structure. The structure consists of an array of various shape slots antenna designed to operate in C and X band applications. The basic structures have been designed over a RT duroid substrate with dielectric constant of 2.2 and with a thickness of 0.508 mm. Multiple slots array and shape of slot effects have been studied and analyzed using HFSS (High Frequency Structure Simulator). The designs have been supported with its return loss, gain plot, VSWR, and radiation pattern characteristics to validate multiband operation. All the proposed antennas give gain more than 9 dB and return loss better than −10 dB. However, the proposed structures have been very sensitive to their physical dimensions.


2019 ◽  
Vol 8 (1) ◽  
pp. 172-179
Author(s):  
Tan Gan Siang ◽  
David Paul David Dass ◽  
Siti Zuraidah Ibrahim ◽  
Mohd Nazri A. Karim ◽  
Aliya A. Dewani

A Ku-band Substrate Integrated Waveguide power divider is proposed. In this work, the SIW power divider is designed with T-junction configuration. The SIW technique enables the power divider to have low insertion loss, low cost and features uniplanar circuit. An additional of metallic via hole is added in the center of the junction to improve the return loss performance of the Tjunction SIW power divider. The simulated input return losses at port 1 are better than 27 dB, and features equal power division of about -3.1 dB ±0.4 dB at both output ports across frequency range of 13.5-18 GHz. The SIW power divider is fabricated, and the measurement results show acceptable performances. Since there are some losses contributed by the SMA connector of the fabricated SIW power divider prototype, an additional SIW transmission line is simulated and fabricated to analyze the connector loss.


Author(s):  
Gulzar Ahmed ◽  
Muhammad Inayatullah Babar ◽  
Sadique Ali ◽  
Faheem Ali

Low BW (Bandwidth) is a major limitation of microstrip antennas. A patch antenna having a large BW for Ku band applications is demonstrated in this manuscript. The skills of Defected Ground Structure (DGS) and defected driven patch were engaged to widen its BW. Four slices have also been confiscated from the ground for upgrading various characteristics. It is established on the basis of this study that it can be employed in spectrum defining and bands. It puts forward an impedance BW of 8GHz, which is appropriate for numerous applications. The ground/substrate of the structure under consideration is 22×10-3m long and 10×103m wide and these specifications imply that the volume of this design is very small. The entire structure’s utmost thickness is 1.67×10-3m. It can be easily installed in relevant handy electronic devices. Investigations and analysis in this case are made with computer software known as Computer Simulation Technology. The simulated design exhibits a very good gain and efficiency. Deviation in the gain of the simulated design was from 4.4 7.3dBi and it guaranteed the highest efficiency of 98.6%. Some minor changes in the antenna resulted in expansion in the BW from 8GHz to 14GHz. The return loss which was recorded at frequency of 18.15GHz went to 48.97dB and the mentioned changes assured the uppermost efficiency of 83.1%. The fabricated antenna achieved a bandwidth of 28GHz which is far better than the simulated bandwidth.


2011 ◽  
Vol 483 ◽  
pp. 457-460
Author(s):  
Guo Ping Du ◽  
Jian Zhu ◽  
Yuan Wei Yu ◽  
Shi Xing Jia ◽  
Li Li Jiang

In this paper, a novel RF MEMS switch driven by combs with low insertion loss is presented. The developed SPST RF MEMS switch with a lateral resistive contact and gold structure layer on a silicon substrate has been fabricated by surface micromachining process. The RF performance of the switch indicates an insertion loss below 0.30 dB at 20 GHz, a return loss better than 20 dB and isolation greater than 30 dB. Good RF characteristics have been achieved by the large contact area and a lateral Au-to-Au resistive contact.


Sign in / Sign up

Export Citation Format

Share Document