scholarly journals Nutrient dynamics in tropical rivers, lagoons, and coastal ecosystems of eastern Hainan Island, South China Sea

2014 ◽  
Vol 11 (2) ◽  
pp. 481-506 ◽  
Author(s):  
R. H. Li ◽  
S. M. Liu ◽  
Y. W. Li ◽  
G. L. Zhang ◽  
J. L. Ren ◽  
...  

Abstract. Nutrient dynamics based on field observations made along the eastern Hainan Island during the period 2006–2009 were investigated to understand nutrient biogeochemical processes, and to provide an overview of human perturbations of coastal ecosystems in this tropical region. The rivers showed seasonal variations in nutrient concentrations, with enrichment of dissolved inorganic nitrogen and dissolved silicate, and depletion of PO43−. High riverine concentrations of nitrate mainly originated from agricultural fertilizer inputs. The DIN : PO43− ratios ranged from 37 to 1063, suggesting preferential depletion of PO43− relative to nitrogen in rivers. Chemical weathering in the drainage area might explain the high levels of dissolved silicate. Aquaculture ponds contained high concentrations of NH4+ and dissolved organic nitrogen. The particulate phosphorus concentrations in the study area were lower than those reported for estuaries worldwide. The particulate silicate levels in rivers and lagoons were lower than the global average level. Nutrient biogeochemistry in coastal areas was affected by human activities (e.g., aquaculture, agriculture), and by natural phenomena including typhoons. The nutrient concentrations in coastal waters were low because of dispersion of land-derived nutrients in the sea. Nutrient budgets were built based on a steady-state box model, which showed that riverine fluxes are magnified by estuarine processes (e.g., regeneration, desorption) in estuaries and Laoyehai Lagoon, but not in Xiaohai Lagoon. Riverine and groundwater inputs were the major sources of nutrients to Xiaohai and Laoyehai lagoons, respectively, and riverine inputs and aquaculture effluents were the major sources for the eastern coast of Hainan Island. Nutrient inputs to the coastal ecosystem increased with typhoon-induced runoff of rainwater, elucidating the important influence of typhoons on small tropical rivers.

2013 ◽  
Vol 10 (6) ◽  
pp. 9091-9147 ◽  
Author(s):  
R. H. Li ◽  
S. M. Liu ◽  
Y. W. Li ◽  
G. L. Zhang ◽  
J. L. Ren ◽  
...  

Abstract. Nutrient dynamics were studied along the eastern Hainan Island based on field observations during 2006–2009, to understand nutrient biogeochemical processes and to have an overview of human perturbations on coastal ecosystems in this tropical region. The concentrations of nutrients in the rivers had seasonal variations enriched with dissolved inorganic nitrogen (DIN). High riverine concentrations of nitrate were mainly originated from agricultural fertilizer input. The ratios of DIN : PO43− ranged from 37 to 1063, suggesting preferential PO43− relative to nitrogen in the rivers. The areal yields of dissolved silicate (DSi) varied from 76 to 448 × 103 mol km−2 yr−1 due to erosion over the drainage area, inducing high levels of DSi among worldwide tropical systems. Aquaculture ponds contained high concentrations of NH4+ (up to 157 μM) and DON (up to 130 μM). Particulate phosphorus concentrations (0.5 ∼1.4 μM) were in lower level comparied with estuaries around the world. Particulate silicate levels in rivers and lagoons were lower than global average level. Nutrient biogeochemistry in coastal areas were affected by human activities (e.g. aquaculture, agriculture), as well as natural events such as typhoon. Nutrient concentrations were low because open sea water dispersed land-derived nutrients. Nutrient budgets were built based on a steady-state box model, which showed that riverine fluxes would be magnified by estuarine processes (e.g. regeneration, desorption) in the Wenchanghe/Wenjiaohe Estuary, Wanquan River estuary, and the Laoyehai Lagoon except in the Xiaohai Lagoon. Riverine and groundwater input were the major sources of nutrients to the Xiaohai Lagoon and the Laiyehai Lagoon, respectively. Riverine input and aquaculture effluent were the major sources of nutrients to the eastern coastal of Hainan Island. Nutrient inputs to the coastal ecosystem can be increased by typhoon-induced runoff of rainwater, and phytoplankton bloom in the sea would be caused.


2005 ◽  
Vol 56 (3) ◽  
pp. 279 ◽  
Author(s):  
Jon E. Brodie ◽  
Alan W. Mitchell

In tropical Australia, intensive studies of river suspended sediment (SS) and nutrient dynamics have been restricted to streams on the north-east coast between the Fitzroy and Normanby Rivers (Queensland), Magela Creek/East Alligator River (Northern Territory) and the Ord River (Western Australia). Historical conditions in these rivers were probably characterised by low–moderate SS concentrations and low concentrations of dissolved inorganic nitrogen and phosphorus in flow events. Introduction of agriculture has transformed SS and nutrient dynamics. Grazing has led to soil erosion and increased SS and particulate nutrient concentrations and fluxes in event flows. Fertilised cropping has increased nutrient inputs to catchments, where it forms a substantial proportion of the catchment area. Consequently, both particulate and dissolved inorganic nutrient concentrations and fluxes have increased. Australian tropical rivers have episodic flows, with most material transport occurring during large flow events. The restricted period of these highly energetic flows means little trapping of materials in waterways occurs. Loads are transported efficiently downstream and processes such as denitrification and in-channel sedimentation may be of limited importance. Owing to excessive nutrient inputs associated with agriculture, a number of northern freshwater, estuarine and coastal ecosystems are now eutrophic. Continued development, especially fertilised cropping, without adequate management of nutrient losses is likely to exacerbate these problems.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1776 ◽  
Author(s):  
Fatemeh Hashemi ◽  
Ina Pohle ◽  
Johannes W.M. Pullens ◽  
Henrik Tornbjerg ◽  
Katarina Kyllmar ◽  
...  

Optimal nutrient pollution monitoring and management in catchments requires an in-depth understanding of spatial and temporal factors controlling nutrient dynamics. Such an understanding can potentially be obtained by analysing stream concentration–discharge (C-Q) relationships for hysteresis behaviours and export regimes. Here, a classification scheme including nine different C-Q types was applied to a total of 87 Nordic streams draining mini-catchments (0.1–65 km2). The classification applied is based on a combination of stream export behaviour (dilution, constant, enrichment) and hysteresis rotational pattern (clock-wise, no rotation, anti-clockwise). The scheme has been applied to an 8-year data series (2010–2017) from small streams in Denmark, Sweden, and Finland on daily discharge and discrete nutrient concentrations, including nitrate (NO3−), total organic N (TON), dissolved reactive phosphorus (DRP), and particulate phosphorus (PP). The dominant nutrient export regimes were enrichment for NO3− and constant for TON, DRP, and PP. Nutrient hysteresis patterns were primarily clockwise or no hysteresis. Similarities in types of C-Q relationships were investigated using Principal Component Analysis (PCA) considering effects of catchment size, land use, climate, and dominant soil type. The PCA analysis revealed that land use and air temperature were the dominant factors controlling nutrient C-Q types. Therefore, the nutrient export behaviour in streams draining Nordic mini-catchments seems to be dominantly controlled by their land use characteristics and, to a lesser extent, their climate.


2010 ◽  
Vol 62 (3) ◽  
pp. 594-602 ◽  
Author(s):  
P. Thaipichitburapa ◽  
C. Meksumpun ◽  
S. Meksumpun

The Tha Chin River Basin located in the great central basin of Thailand is used for water supply, aquaculture, transportation, and recreation as well as a sink for wastewater discharges. Because of gradual deterioration of water quality and fishery resources, this study aimed to explain recent status of the river self-remediation efficiency that was influenced by nutrient inputs and outputs from the river system. Field surveys were carried out during May 2007 (early rainy season) and October 2007 (late rainy season) within the Tha Chin River located in 4 provinces; Chainat, Suphan Buri, Nakhon Pathom, and Samut Sakhon. The nutrient budgets in each province section were analyzed. Results indicated that the river was in eutrophic condition all year round. High nitrogen and phosphorus loads from surrounding agricultural land use, agro-industry, and community continuously flew into the river system. Those nutrient concentrations were higher in the early rainy season than the late rainy season. The lowest river zone (in Samut Sakhon province) indicated highest dissolved inorganic nitrogen (DIN) and orthophosphate phosphorus (P) discharges of 145.54 and 36.14 tons/day, respectively. The highest remediation efficiency of the river (ca 60% of the total input) was found in the uppermost area of Suphan Buri province. The lowest remediation efficiency (ca 12%) was found in Samut Sakhon province. From the overall view, long term monitoring of river and estuarine DIN and P should be conducted. To make better condition of aquatic environment and fishery resource in each province-based section, the controls of DIN and P remediation efficiencies (e.g. by effective management of flow speed) at 20 and 50%, respectively, were recommended.


2021 ◽  
Author(s):  
Victor Burgeon ◽  
Julien Fouché ◽  
Sarah Garré ◽  
Ramin Heidarian-Dehkordi ◽  
Gilles Colinet ◽  
...  

<p>The amendment of biochar to soils is often considered for its potential as a climate change mitigation and adaptation tool through agriculture. Its presence in tropical agroecosystems has been reported to positively impact soil productivity whilst successfully storing C on the short and long-term. In temperate systems, recent research showed limited to no effect on productivity following recent biochar addition to soils. Its long-term effects on productivity and nutrient cycling have, however, been overlooked yet are essential before the use of biochar can be generalized.</p><p>Our study was set up in a conventionally cropped field, containing relict charcoal kiln sites used as a model for century old biochar (CoBC, ~220 years old). These sites were compared to soils amended with recently pyrolyzed biochar (YBC) and biochar free soils (REF) to study nutrient dynamics in the soil-water-plant system. Our research focused on soil chemical properties, crop nutrient uptake and soil solution nutrient concentrations. Crop plant samples were collected over three consecutive land occupations (chicory, winter wheat and a cover crop) and soil solutions gathered through the use of suctions cups inserted in different horizons of the studied Luvisol throughout the field.</p><p>Our results showed that YBC mainly influenced the soil solution composition whereas CoBC mainly impacted the total and plant available soil nutrient content. In soils with YBC, our results showed lower nitrate and potassium concentrations in subsoil horizons, suggesting a decreased leaching, and higher phosphate concentrations in topsoil horizons. With time and the oxidation of biochar particles, our results reported higher total soil N, available K and Ca in the topsoil horizon when compared to REF, whereas available P was significantly smaller. Although significant changes occurred in terms of plant available nutrient contents and soil solution nutrient concentrations, this did not transcend in variations in crop productivity between soils for neither of the studied crops. Overall, our study highlights that young or aged biochar behave as two distinct products in terms of nutrient cycling in soils. As such the sustainability of these soils differ and their management must therefore evolve with time.</p>


2021 ◽  
Vol 61 (7) ◽  
pp. 690
Author(s):  
Gisele M. Fagundes ◽  
Gabriela Benetel ◽  
Mateus M. Carriero ◽  
Ricardo L. M. Sousa ◽  
Kelly C. Santos ◽  
...  

Context Plant bioactive compounds such as condensed tannins (CT) are seen as an alternative to rumen chemical modulators to mitigate rumen methanogenesis in livestock; however, the presence of CT in ruminant faeces also produces a series of changes in soil microbiomes. Little is known about these effects on soil nutrient dynamics. Therefore, whether CT affect the decomposition process of faecal organic matter, delaying it and consequently increasing soil carbon and nitrogen (N) sequestration, merits study. Aims Our study investigated the effects of a diet rich in CT on bovine faecal composition and on subsequent dynamics of a soil microbial population. Methods Faeces were analysed from cattle fed the following diets: control (no CT), 1.25% CT, 2.5% CT. In a greenhouse pot experiment over a period of 60 days, faeces from the three dietary treatments were applied to soil and the soil microbial populations were measured against a control with no faeces applied. Key results The presence of CT increased the excretion of faecal N and of neutral and acid detergent fibres and lignin, and the higher rate of CT reduced the rate of soil organic matter decomposition. Treatments with dietary CT resulted in greater total numbers of bacteria in the soil than in the no-faeces control and stimulated numbers of Actinobacteria, Proteobacteria (α-Proteobacteria) and Firmicutes. Conclusions The study showed that CT alter N recycling and other nutrient inputs in a soil–animal ecosystem by increasing faecal N inputs, delaying organic matter breakdown, and changing soil microbial dynamics. Implications The presence of CT in ruminant diets can be beneficial to the soil environment. Sustainable management practices should be encouraged by providing ruminants with feed including high-CT legumes in silvopastoral systems.


2002 ◽  
Vol 46 (8) ◽  
pp. 59-66 ◽  
Author(s):  
E. Okuş ◽  
A. Aslan-Yilmaz ◽  
A. Yüksek ◽  
S. Taş ◽  
V. Tüfekçi

As part of a five years monitoring project “Water Quality Monitoring of the Strait of Istanbul”, February-December 1999 nutrient dynamics of the Black Sea-the Sea of Marmara transect are studied to evaluate the effect of discharges given by deep disposals. Through a one-year study, upper layer nutrient concentrations were generally under the effect of northwestern-shelf Black Sea originated waters. This effect was strictly observed in July, when the upper layer flow was the thickest. On the other hand, partly in November but especially in December the northwestern-shelf Black Sea originated water flow was a minimum resulting in similar concentrations in both layers. Nutrient fluctuations also affected the chlorophyll a and POC concentrations as parameters of productivity. The nutrient concentrations decreased with the effect of spring bloom and highest chlorophyll a values were detected in November at Strait stations that did not match to the Sea of Marmara values. This fact represents the time-scale difference between the Black Sea and the Sea of Marmara. On the contrary, high nutrient concentrations in the lower layer (especially inorganic phosphate), and therefore low N:P ratios reflect the effect of deep discharge. Vertical mixing caused by meteorological conditions of the shallow station (M3) under the effect of surface discharges resulted in homogenous distribution of nutrients. Nutrient concentrations of the stations affected by deep discharge showed that the two-layer stratification of the system did not permit the discharge mix to the upper layer.


Plants ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 5 ◽  
Author(s):  
Muhammad Amjad ◽  
Hasan Raza ◽  
Behzad Murtaza ◽  
Ghulam Abbas ◽  
Muhammad Imran ◽  
...  

Nickel (Ni) is among the essential micronutrient heavy metals utilized by plants. However, an elevated level of Ni causes serious concerns for plants’ physiology and their survival. This study evaluated the mechanisms influencing the growth, physiology, and nutrient dynamics in two commercial maize hybrids (Syngenta and Pioneer) exposed to Ni treatments in hydroponics nutrient solution (NS). Seedlings were raised in plastic trays with quartz sand, and subsequently transferred to Hoagland’s NS at the two leaves stage. After three days of transplantation, Ni levels of 0, 20, and 40 mg L−1 were maintained in the nutrient solution. After 30 days of Ni treatments, seedlings were harvested and different growth, physiological, and nutrient concentrations were determined. The results showed that with increasing Ni concentration, the growth of maize hybrids was significantly reduced, and the maize hybrid, Pioneer, showed significantly higher growth than that of Syngenta at all levels of Ni. Higher growth in Pioneer is ascribed to elevated levels of antioxidant enzymes (SOD, CAT, GR, APX, and POX), lower damage to cellular membranes (i.e., higher MSI and lower MDA), and higher tissue nutrient concentrations (N, P, K, Ca, Mg, Fe, Mn, Zn, and Cu). Furthermore, the maize hybrids showed a difference in nutrient translocation from root to shoot which could be one of the factors responsible for differential response of these hybrids against Ni treatments.


Hydrology ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 123
Author(s):  
Seth Michael Barrus ◽  
Gustavious Paul Williams ◽  
A. Woodruff Miller ◽  
M. Brett Borup ◽  
LaVere B. Merritt ◽  
...  

We describe modified sampling and analysis methods to quantify nutrient atmospheric deposition (AD) and estimate Utah Lake nutrient loading. We address criticisms of previous published collection methods, specifically collection table height, screened buckets, and assumptions of AD spatial patterns. We generally follow National Atmospheric Deposition Program (NADP) recommendations but deviate to measure lake AD, which includes deposition from both local and long-range sources. The NADP guidelines are designed to eliminate local contributions to the extent possible, while lake AD loads should include local contributions. We collected side-by-side data with tables at 1 m (previous results) and 2 m (NADP guidelines) above the ground at two separate locations. We found no statistically significant difference between data collected at the different heights. Previous published work assumed AD rates would decrease rapidly from the shore. We collected data from the lake interior and show that AD rates do not significantly decline away from the shore. This demonstrates that AD loads should be estimated by using the available data and geostatistical methods even if all data are from shoreline stations. We evaluated screening collection buckets. Standard unscreened AD samples had up to 3-fold higher nutrient concentrations than screened AD collections. It is not clear which samples best represent lake AD rates, but we recommend the use of screens and placed screens on all sample buckets for the majority of the 2020 data to exclude insects and other larger objects such as leaves. We updated AD load estimates for Utah Lake. Previous published estimates computed total AD loads of 350 and 153 tons of total phosphorous (TP) and 460 and 505 tons of dissolve inorganic nitrogen (DIN) for 2017 and 2018, respectively. Using updated collection methods, we estimated 262 and 133 tons of TP and 1052 and 482 tons of DIN for 2019 and 2020, respectively. The 2020 results used screened samplers with lower AD rates, which resulted in significantly lower totals than 2019. We present these modified methods and use data and analysis to support the updated methods and assumptions to help guide other studies of nutrient AD on lakes and reservoirs. We show that AD nutrient loads can be a significant amount of the total load and should be included in load studies.


2020 ◽  
Vol 163 ◽  
pp. 05014
Author(s):  
Maria Tereshina ◽  
Oxana Erina ◽  
Dmitriy Sokolov ◽  
Lyudmila Efimova ◽  
Nikolay Kasimov

An extensive study conducted during the dry summer of 2019 provided a detailed picture of the nutrient content dynamics along the Moskva River. Water sampling at 38 locations on the main river and at 17 of its tributaries revealed a manifold increase in phosphorus and nitrogen concentrations as the river crosses the Moscow metropolitan area, which can be attributed to both direct discharge of poorly treated sewage and nonpoint urban pollution. Even at the Moskva River lower reaches, where the anthropogenic pressure on the river and its tributaries is less pronounced, the inorganic nitrogen and phosphorus content remains consistently high and exceeds the environmental guidelines by up to almost 10 times. This indicates increased vulnerability of the Moskva River ecosystem during periods of low flow, which can be a major factor of eutrophication in the entire Moskva-Oka-Volga system. Comparison of our data with some archive records shows no significant improve in the nutrient pollution of the river since the 1990s, which raises further concern about the effectiveness of water quality management in Moscow urban region.


Sign in / Sign up

Export Citation Format

Share Document