scholarly journals Feedbacks between earlywood anatomy and non-structural carbohydrates affect spring phenology and wood production in ring-porous oaks

2016 ◽  
Vol 13 (19) ◽  
pp. 5499-5510 ◽  
Author(s):  
Gonzalo Pérez-de-Lis ◽  
Ignacio García-González ◽  
Vicente Rozas ◽  
José Miguel Olano

Abstract. Non-structural carbohydrates (NSC) play a central role in the construction and maintenance of a tree's vascular system, but feedbacks between the NSC status of trees and wood formation are not fully understood. We aimed to evaluate multiple dependencies among wood anatomy, winter NSC, and phenology for coexisting temperate (Quercus robur) and sub-Mediterranean (Q. pyrenaica) oaks along a water-availability gradient in the NW Iberian Peninsula. Sapwood NSC concentrations were quantified at three sites in December 2012 (N =  240). Leaf phenology and wood anatomy were surveyed in 2013. Structural equation modelling was used to analyse the interplay among hydraulic diameter (Dh), winter NSC, budburst date, and earlywood vessel production (EVP), while the effect of Dh and EVP on latewood width was assessed by using a mixed-effects model. NSC and wood production increased under drier conditions for both species. Q. robur showed a narrower Dh and lower soluble sugar (SS) concentration (3.88–5.08 % dry matter) than Q. pyrenaica (4.06–5.57 % dry matter), but Q. robur exhibited larger EVP and wider latewood (1403 µm) than Q. pyrenaica (667 µm). Stem diameter and Dh had a positive effect on SS concentrations, which were related to an earlier leaf flushing in both species. Sapwood sugar content appeared to limit EVP exclusively in Q. pyrenaica. In turn, Dh and EVP were found to be key predictors of latewood growth. Our results confirm that sapwood SS concentrations are involved in modulating growth resumption and xylem production in spring. Q. pyrenaica exhibited a tighter control of carbohydrate allocation to wood formation than Q. robur, which would play a role in protecting against environmental stress in the sub-Mediterranean area.

2016 ◽  
Author(s):  
Gonzalo Pérez-de-Lis ◽  
Ignacio García-González ◽  
Vicente Rozas ◽  
José Miguel Olano

Abstract. Non-structural carbohydrates (NSC) play a central role in the construction and maintenance of the vascular system, but feedbacks between the NSC status of trees and wood formation are not fully understood. We aimed to evaluate multiple dependencies among wood anatomy, winter NSC, and phenology for coexisting temperate (Quercus robur) and sub-Mediterranean (Q. pyrenaica) oaks along a water-availability gradient in NW Iberian Peninsula. Sapwood NSC was quantified at three sites in December 2012 (n = 240). Leaf phenology and wood anatomy were surveyed in 2013. Structural equation modelling was used to analyze the interplay among hydraulic diameter (Dh), winter NSC, date of budburst, and earlywood vessel production (EVP), while the effect of Dh and EVP on latewood width was assessed by using a mixed-effects model. NSC and wood production increased under drier conditions in both species. Q. robur showed narrower Dh and lower soluble sugar (SS) concentration (3.88–5.08 % dry matter) than Q. pyrenaica (4.06–5.57 % dry matter), but Q. robur exhibited larger EVP and wider latewood (1,403 µm) than Q. pyrenaica (667 µm). Trees of both species with large Dh showed higher SS concentration in winter and earlier flushing. Q. pyrenaica exhibited a carbon saving strategy, as evidences the fact that EVP was in tune with SS content in winter. Latewood production was controlled by Dh and EVP, rather than by foliage density and growing season duration. Our results suggest that high SS content in oaks with high conductive area favours an earlier spring phenology, as well as earlywood growth. Q. pyrenaica exhibited a tighter control of carbohydrate allocation to xylem formation than Q. robur, which is probably related to the acquisition of physiological resistance to stress in the sub-Mediterranean area.


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 4884
Author(s):  
Khadijeh Yasaminshirazi ◽  
Jens Hartung ◽  
Michael Fleck ◽  
Simone Graeff-Hoenninger

The growing interest of consumers in healthy organic products has increased the attention to the organic production of beetroot. In this regard, six field experiments were conducted in 2017 and 2018 in three different locations under the specific conditions of organic agriculture, and fifteen beetroot genotypes, including one F1 hybrid as a commercial control and one breeding line, were compared regarding the content of the total dry matter, total soluble sugar, nitrate, betalain, and total phenolic compounds in order to investigate the genetic potential of new and existing open-pollinated genotypes of beetroot regarding the content of their bioactive compounds. The results of this study indicated a significant impact of genotype (p < 0.05) on all measured compounds. Furthermore, results revealed a significant influence of the interactions of location × year (p < 0.05) on the beetroot composition, and, thus, the role of environmental conditions for the formation of tested compounds. The total dry matter content (TDMC) of beetroots varied between 14.12% and 17.50%. The genotype ‘Nochowski’, which possessed the highest total soluble sugar content with 14.67 °Bx (Brix), was among the genotypes with the lowest nitrate content. On the contrary, the cylindrical-shaped genotype ‘Carillon RZ’ (Rijk Zwaan), indicated the lowest sugar content and the highest nitrate concentration. The amount of total phenolic compounds ranged between 352.46 ± 28.24 mg GAE 100 g−1 DW (milligrams of gallic acid equivalents per 100 g of dry weight) and 489.06 ± 28.24 mg GAE 100 g−1 DW for the red-colored genotypes which is correlated with the high antioxidant capacity of the investigated genotypes. Due to the specifics of the required content of bioactive compounds for various products, the selection of suitable genotypes should be aligned with the intended final utilization.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
E. Malinowska ◽  
K. Jankowski

The aim of this paper is to evaluate the effect of different doses of spent mushroom substrate and cow slurry on sugar content and digestibility of hybrid alfalfa and grass mixtures. The main factors were different doses of organic material: mushroom substrate and slurry, and the following legume grass mixtures: M1-orchard grass (Dactylis glomerata), perennial ryegrass (Lolium perenne), and hybrid alfalfa (Medicago x varia T. Martyn); M2-orchard grass, hybrid alfalfa; M3-perennial ryegrass, hybrid alfalfa. In each growing season, the mixtures were harvested three times during three years of their full use. Sugar content and dry matter digestibility were determined with near-infrared spectroscopy (NIRS) using the NIRFlex N-500 spectrometer. Of all fertilizer treatments, the application of mushroom substrate at a dose of 20 t·ha−1 in combination with 40 m3 of slurry resulted in the best forage quality with its highest digestibility. In the mixture of perennial ryegrass and hybrid alfalfa increasing doses of mushroom substrate with decreasing doses of slurry lowered soluble sugar content and digestibility.


Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1916
Author(s):  
Iwona Ledwożyw-Smoleń ◽  
Sylwester Smoleń ◽  
Stanisław Rożek ◽  
Włodzimierz Sady ◽  
Piotr Strzetelski

Despite wide prevention programmes, iodine deficiency remains a substantial problem in various populations around the world. Consumption of crop plants with increased iodine content may help supply additional amounts of that element in a daily diet. The aim of the work was to evaluate the efficiency of iodine biofortification of potato tubers. Soil application of KI and foliar application of KIO3 in doses up to 2.0 kg I ha−1 were tested in a three-year field experiment. Biomass, yield as well as dry matter, iodine, starch, and soluble sugar content in potato tubers were analyzed. No negative effect of tested methods of iodine application on potato yield or dry matter content was observed. Both soil and foliar application of iodine allowed to obtain potato tubers with increased content of that element with no decrease of starch or sugar content. The highest efficiency of iodine biofortification was noted for foliar spraying with KIO3 in a dose of 2.0 kg I ha−1. The obtained level of iodine in 100 g of potatoes could be sufficient to cover up to 25% of Recommended Daily Allowance for that element. The findings of the study indicate that potatoes biofortified with iodine can become an additional source of I in a daily diet.


1978 ◽  
Vol 58 (1) ◽  
pp. 199-206 ◽  
Author(s):  
M. TOLLENAAR ◽  
T. B. DAYNARD

Kernel development was studied in the maize (Zea mays L.) hybrids United-H106 and Funk’s G-4444, grown in a controlled-environment growth room. A method was employed in which husks were excised, and kernels were removed from the same set of ears at several subsequent sampling dates. This method did not affect the dry matter accumulation of the remaining kernels. Basal kernels (kernel numbers 6–15 in the row) and tip kernels (kernel numbers 31–40) were removed at 2-day intervals during the period from 10 to 20 days postsilking. Dry weight, ethanol-soluble sugar content, and starch content were determined for each sample. Accumulation of dry matter in the tip kernels ceased in a fraction of the United-H106 ears at the onset of the period of linear tip-kernel dry matter accumulation. Only small differences were observed in sugar content between growing and non-growing tip kernels of ears of United-H106. Starch appeared to continue to accumulate in kernels in which dry matter had ceased to accumulate. Except for a delay of approximately 2 days, the pattern of development of tip kernels in Funk’s G-4444 was similar to that of kernels at the base.


Author(s):  
Isidro García-Chávez ◽  
Edgar Meraz-Romero ◽  
Octavio Castelán-Ortega ◽  
Joob Zaragoza Esparza ◽  
Jorge Osorio Avalos ◽  
...  

Corn silage (Zea mays L.) is the most widely used energy resource in the diets of dairy cattle around the world; it stands out for its higher biomass yields, good palatability, homogeneous quality at harvest and ease of silage due to its higher soluble sugar content. It was carried out a search of studies related to dry matter yield (ton ha-1), population density (plant density ha-1), dry matter (DM), crude protein (CP), neutral detergent fiber (NDF), non-fibrous carbohydrates (NFC), organic matter (OM), DM digestibility (DMD) and neutral detergent fiber digestibility (NDFD) and milk production per hectare (kg of milk ha-1) that was determined using MILK2006&reg;. It was carried out a cluster analysis (CL, PROC CLUSTER) obtaining six groups of corn silage: CL1: "Starch", which included DMD, DFDN, TDN1xDM, Mega calories per kg of DM and kg of milk/ton/DM; CL2: "Fats" which included TDN1xMS, Mcal/kg/DM and kg of milk/ton/DM; CL3: "Dry Matter", conformed only by DFDN; CL4: "Plant Density" including Yield of DM ha-1 and Milk Production ha-1; CL5: "Neutral Detergent Fiber" and CL6: "Raw Protein". It is concluded that CL1 was characterized by a higher DMD, DFND, CNF and starch that allow a higher TNDx1DM and an energy concentration (Mcal/kg/DM) that shows a higher milk production (kg of milk/ton/DM ha-1). The characteristics of CL2 with higher EE, allow a higher TNDx1DM and an energy concentration (Mcal/kg/DM) with a higher milk production (kg of milk/ton/DM ha-1).


2011 ◽  
Vol 23 (2) ◽  
pp. 107-110 ◽  
Author(s):  
Maria Gawęda ◽  
Zofia Nizioł-Łukaszewska

Quality of kohlrabi stems (Brassica oleracea var. gongylodes L.) kept in cold storage Two green kohlrabi cultivars, ‘White Delikates’ and ‘Korist’ F1, were kept in cold storage at a temperature of 2°C and a relative humidity of 95%. Natural mass losses were measured at monthly intervals and dry matter content, soluble sugars, L-ascorbic acid and isothiocyanates were analysed. During five months of storage, very low losses of kohlrabi mass were detected. The decrease in dry matter during that time was between 15 and 18%. After a brief increase, soluble sugar content decreased during storage, and in March, 50% of the initial sugar content was calculated for ‘Delikates’ kohlrabi flesh and 65% for ‘Korist’. L-ascorbic acid was well preserved in the kohlrabi, since 90% remained after storage was completed. The isothiocyanate content changed little and the vegetable remained a good source of these compounds throughout the storage period.


2013 ◽  
Vol 40 (4) ◽  
pp. 342 ◽  
Author(s):  
Sylvain Gutjahr ◽  
Michel Vaksmann ◽  
Michaël Dingkuhn ◽  
Korothimi Thera ◽  
Gilles Trouche ◽  
...  

Grain and sweet sorghum (Sorghum bicolor (L.) Moench) differ in their ability to produce either high grain yield or high sugar concentration in the stems. Some cultivars of sorghum may yield both grains and sugar. This paper investigates the trade-offs among biomass, grain and sugar production. Fourteen tropical sorghum genotypes with contrasted sweetness and PP sensitivity were evaluated in the field near Bamako (Mali) at three sowing dates under favourable rainfed conditions. Plant phenology, morphology, dry matter of different organs and stem sugar content were measured at anthesis and grain maturity. A panicle pruning treatment was implemented after anthesis. Late sowing (shorter days) led to a decrease in total leaf number, dry mass and sugar yield even in PP-insensitive genotypes because of an increased phyllochron. Dry matter production and soluble sugar accumulation were strongly correlated with leaf number. Sugar concentration varied little among sowing dates or between anthesis and maturity. This indicates that sugar accumulation happened mainly before anthesis, thus largely escaping from competition with grain filling. This was confirmed by the low impact of panicle pruning on sugar concentration. Changes in sugar concentration from anthesis to maturity were negatively correlated with harvest index but not with grain yield. Physiological trade-offs among sugar, biomass and grain production under favourable rainfall are small in late-maturing and PP-sensitive sweet sorghums cultivated under sudano-sahelian conditions. The results differ from earlier reports that focussed on early maturing, PP-insensitive germplasm. Further research is needed on the interactions of these traits with agricultural practices and drought.


2012 ◽  
Vol 24 (2) ◽  
pp. 161-166 ◽  
Author(s):  
Piotr Siwek ◽  
Andrzej Libik ◽  
Izabela Zawiska

Abstract Field experiments using ‘melt-blown’ biodegradable nonwovens were carried out on the ‘Melodion’ butterhead lettuce (Lactuca sativa var. capitata L.) cultivar for early harvest. All biodegradable nonwovens were manufactured in the Institute of Biopolymers and Chemical Fibres and POLMATEX CENARO in Łódź, Poland. Lettuce seeds were sown into boxes in a greenhouse at the beginning of March, and transplants were planted into the field at the beginning of April. Biodegradable nonwovens - aromatic polyester IBWCH 75 g m-2, polybutylene succinate Bionolle 100 g m-2 and standard polypropylene PP Agro 20 g m-2 - were stretched over the lettuce in the field. The covers were kept on until 4-5 days before harvest. Plots without covers were defined as the control. Ascorbic acid, soluble sugar, dry matter, nitrates, chlorophyll a, chlorophyll b and carotenoid contents were recorded in the leaves. All biodegradable nonwovens showed a positive effect on yielding in comparison to the control in 2009. In the second year of the experiment, there were no significant differences between covers with regard to the yield. Dry matter and soluble sugar content in both years of the experiment was diversified. Nonwovens used as covers in 2009 significantly increased the content of nitrates in comparison to the control. In the second year, the highest level of nitrates was demonstrated in the control object. It is worth underlining that the maximum allowed limit of nitrate content in lettuce (4000 mg kg f.w.) was not exceed. The kind of cover had no significant effect on the level of chlorophyll a in 2009 or chlorophyll b and carotenoids in 2009 and 2010 in the lettuce


2009 ◽  
Vol 21 (2) ◽  
pp. 25-34 ◽  
Author(s):  
Aneta Grabowska ◽  
Edward Kunicki ◽  
Andrzej Libik

Abstract The aim of the present experiment was to assess the influence of the method of cultivation and spacing on the market and nutritive quality of ‘Lord F1’ broccoli heads. The experiment was conducted at the University of Agriculture in Krakow, Poland, in 2002-2004. The method of broccoli cultivation (direct sowing or transplanting, and spacing: 20, 30, 40 and 50 cm × 67.5 cm) had no clear influence on the dry matter content in the heads. The mean dry matter content in broccoli heads was 9.5%, and reducing sugar was 1.12% of fresh matter. In 2002 and 2004, transplanting resulted in an increase of soluble sugar content as compared to direct sowing. The element content in broccoli was dependent mainly on the vegetation season, but in many cases directly sown plants had more phosphorus, potassium, calcium, and magnesium. With the increase of spacing in rows the content of some elements (P, K, Ca, Mg) in broccoli heads rose in the first year of the experiment. The mean content of elements found in broccoli heads was as follows (in mg kg-1 of dry matter): phosphorus 6001, potassium 23447, calcium 3696, magnesium 1583, and iron 66.7.


Sign in / Sign up

Export Citation Format

Share Document