scholarly journals Rates of biogeochemical phosphorus and copper redistribution in young floodplain soils

2009 ◽  
Vol 6 (12) ◽  
pp. 2949-2956 ◽  
Author(s):  
F. Zehetner ◽  
G. J. Lair ◽  
M. Graf ◽  
M. H. Gerzabek

Abstract. Nutrients and trace metals in river-floodplain systems may originate from anthropogenic activities and/or geogenic sources. Here, we analyze a soil chronosequence (2 to approximately 600 years) on a floodplain at the Danube River (Austria) to quantify the rates of P and Cu redistribution among biogeochemical pools during early soil formation under temperate continental climate. While bulk and clay mineralogy remained unchanged over the studied age gradient, we found considerable (mostly non-linear) redistribution of P and Cu among biogeochemical pools. The calcium-associated P and Cu fractions decreased rapidly during the initial decades of soil formation. The dissolution of calcium-associated P was mirrored by marked accumulation of organic P. Copper incorporated within resistant minerals showed a relative enrichment with soil age. The mean dissolution rates of calcium-associated (primary mineral) P decreased exponentially with increasing soil age from ~1.6 g m−2 yr−1 over ~15 years to ~0.04 g m−2 yr−1 over ~550 years, and were almost an order of magnitude higher than rates reported for tropical environments. Our study demonstrates that on riverine floodplains, rapid biogeochemical transformations can occur within the first centuries of soil formation under temperate climatic conditions.

2009 ◽  
Vol 6 (5) ◽  
pp. 9525-9545
Author(s):  
F. Zehetner ◽  
G. J. Lair ◽  
M. Graf ◽  
M. H. Gerzabek

Abstract. Nutrients and trace metals in river-floodplain systems may originate from anthropogenic activities and/or geogenic sources. Here, we analyze a soil chronosequence on a floodplain at the Danube River (Austria) to quantify the rates of P and Cu redistribution among biogeochemical pools during 600 years of soil formation under temperate continental climate. While bulk and clay mineralogy remained unchanged over the studied age gradient, we found considerable (mostly non-linear) redistribution of P and Cu among biogeochemical pools. The calcium-associated P and Cu pools decreased rapidly during the initial decades of soil formation. The dissolution of the calcium-associated pools was mirrored by marked accumulation of organic P, but was not accompanied by changes in organic matter-associated Cu. The dissolution rates of calcium-associated (primary mineral) P showed an exponential decrease with increasing soil age, and were almost an order of magnitude higher than rates reported for tropical environments. Our study demonstrates that on riverine floodplains, substantial biogeochemical redistribution can occur within the first centuries of soil formation, and that, even under temperate climatic conditions, biogeochemical transformation rates can be exceedingly high in these ecosystems.


Agropedology ◽  
2019 ◽  
Vol 26 (1) ◽  
Author(s):  
M. Velayutham ◽  
◽  
D.K. Pal ◽  
◽  

Soil is a dynamic and living natural resource, which supports to produce goods and services of value to humans but not necessarily with perpetual ability against the degradative processes. It is well known that soil formation is a slow process, and a substantial amount of soil can form only over a geologic timescale. Soil misuse and extreme climatic conditions can damage self-regulating capacity and give way to regressive pedogenesis (Pal et al. 2013), and thus might lead to the soil to regress from higher to lower usefulness and or drastically diminished productivity. Such an unfavorable transformation of soils is termed as ‘soil degradation'. However, soils do have an inherent ability to restore their life support processes if the disturbances created by anthropogenic activities are not too drastic and sudden, and mitigated with enough time is allowed for life-support processes to restore themselves. This intrinsic ability of soils to regenerate their productivity is called resilience (Szabolcs 1994). Therefore, soil resilience is the ability to bounce back or return to normal functioning, after adversity, for sustainable productive purposes.


Geosciences ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 323
Author(s):  
Galina Vorobieva ◽  
Nadezhda Vashukevich ◽  
Natalia Berdnikova ◽  
Ivan Berdnikov ◽  
Dmitry Zolotarev ◽  
...  

The time of Sartan glaciation in the Baikal–Yenisei Siberia, is comparable with that of MIS 2 and the deglaciation phase MIS 1. Loess loams, aeolian–colluvial sands and sandy loams represent subaerial sediments. There are four subhorizons (sr1, sr2, sr3 and sr4) in the Sartan horizon (sr). Sedimentary and soil-forming processes at different stratigraphic levels are considered. Differing soil formation types of cold periods are distinguished. Soils of the interstadial type with the A-C profile are represented only in the Early Sartan section of this paper. The soils of the pleniglacial type are discussed throughout the section. Their initial profile is O-C, TJ-C and W-C. Plant detritus remnants or poor thin humus horizons are preserved in places from the upper horizons. We propose for the first time for the interphasial soil formation type of cold stages to be distinguished. This is represented in the sections by the preserved BCm, BCg, Cm and Cg horizons of 15–20 cm thick. The upper horizons are absent in most sections. According to the surviving fragments, these were organogenous (O, TJ and T) and organomineral (AO and W) horizons. The sedimentation and soil formation features are considered from the perspective reconstruction of the Sartan natural and climatic conditions. Buried Sartan soils often contain cultural layers. Soil formation shows a well-defined periodicity of natural condition stabilization, which allowed ancient populations to adapt actively to various situations. Archaeologists’ interest in fossil soils is based on the ability of soils to “record” information about the natural and climatic conditions of human habitation.


The Holocene ◽  
2018 ◽  
Vol 29 (3) ◽  
pp. 421-431
Author(s):  
J Max Troncoso Castro ◽  
Carolina Vergara ◽  
Denisse Alvarez ◽  
Gustavo Díaz ◽  
Pablo Fierro ◽  
...  

Knowledge of past environmental and climatic conditions of lake ecosystems on Chiloé Island on a millennial scale is limited. Hence, this study fills a gap in our understanding of this part of southern Chile. The aim of this study was to reconstruct the environmental and climatic history of the last 1000 years of Lake Pastahué through a multi-proxy sediment core analysis. The 1-m-long core was subsampled every centimeter for the organic matter, magnetic susceptibility, grain-size distribution, and biological indicator (pollen, chironomids) analyses. The age model was constructed from 210Pb, 137Cs, and 14C activity. Pollen results revealed a North Patagonian forest composition represented by Nothofagus, Weinmannia, Drimys, Tepualia, Myrtaceae, Poaceae, and Pteridophyta. The abundance of Rumex and Pinus in the most recent part of the pollen assemblage reflects a clear anthropogenic impact. The sedimentological parameters and chironomid assemblage show similar variations, which highlight changes in the trophic state of the lake. The changes observed in all proxies suggest the influence of climate events such as the ‘Medieval Climate Anomaly’ (MCA) and ‘Little Ice Age’ (LIA). The variations observed since the beginning of the 20th century could be the result of the combined effect of anthropogenic activities and the increase in temperature recorded in south-central Chile and Patagonia.


1993 ◽  
Vol 39 (2) ◽  
pp. 186-200 ◽  
Author(s):  
Terry W. Swanson ◽  
Deborah L. Elliott-Fisk ◽  
Randel J. Southard

AbstractDetailed mapping and provisional numerical age determinations of glacial deposits in the South Chiatovich Creek Basin of the White Mountains provide an opportunity to evaluate the ability of conventional soil parameters to discriminate first- and second-order glacial events. Sampling and analytical procedures were designed to minimize variation in climate and lithology. When lithology and climate are similar among sites, age trends are more pronounced in both field and chemical soil properties. Profile development indices (PDIs), adjusted by removing melanization and pH, systematically increase with greater soil age, and discriminate first-order, but not second-order, glacial events. The best-fit curve for adjusted PDI data assumes an exponential form and suggests that the rate of soil formation in this region decreases over time, similar to the rate of weathering-rind development. Variation in eolian influx and surface erosion, which are dominant processes affecting soils of the basin, cause major uncertainties in establishing soil age and, hence, soil-development rates. Even on the youngest glacial deposits, soil age is probably significantly less than deposit age due to these geomorphic processes. Soil and weathering parameters imply that these field techniques can be inexpensively employed to define relative chronologies and to assess surface degradation and its impact on surface exposure ages. Results from this study indicate that site-selection strategy for establishing glacial chronologies should be reevaluated. Working with stable residual bedrock surfaces and associated low-relief outwash fans and terraces may prove more productive than focusing on relatively unstable moraine surfaces in tectonically active mountain systems.


1987 ◽  
Vol 78 (2) ◽  
pp. 115-127 ◽  
Author(s):  
B. Dash ◽  
K. N. Sahu ◽  
D. R. Bowes

ABSTRACTThe quartz-sillimanite-garnet rocks of the Precambrian khondalite assemblage of Orissa consist dominantly of SiO2 + Al2O3 + Fe2O3 + FeO (average c. 95%) with Fe2O3 > FeO. An average analysis (H2O and CO2 free) also shows MgO, CaO and Na2O having 1·0, 0·5 and 0·4%, respectively. Compared with average crustal abundances, enrichment is shown in SiO2, Al2O3 and Fetot and depletion shown in MgO, CaO, Na2O and P2O5 with that for CaO being more than an order of magnitude and that for Na2O being a factor of >7. On an SiO2–Al2O3–Fetot plot a clearly defined field, elongate nearly parallel to the SiO2–Al2O3 sideline, is similar to that for deeply weathered soil profiles in Brazil. This correspondence also extends to enrichment, stability or depletion, compared to crustal averages, for Ce, Co, Cu, Ga, La, Ni, Nb, Th, U, Y, Zn and Zr, but not for Ba, Cr and Rb. In addition comparison of the proportions and ratios of alkalis and alkaline earths in average khondalite and in a weathering profile over a granodiorite, considered to be typical of the weathering of continents, shows remarkable similarities.The major and trace element data are consistent with the khondalites being granulite facies—upper amphibolite facies metamorphic equivalents of a deeply weathered soil profile. Associated quartzites and calc-silicate granulites are interpreted as having been silcretes and calcretes, respectively. This interpretation implies (1) the previous existence of a large stable cratonic mass on which the soil profile formed, (2) climatic conditions suitable for the development of such a profile, (3) topography, drainage systems and groundwater movement in Precambrian times similar to those of present day peneplane regions, (4) the presence of free oxygen in the atmosphere, (5) rapid covering (e.g. by products of volcanism) to preclude mass wasting, (6) a Precambrian stratigraphy in the crystalline rocks of the Eastern Ghats region similar to that of South India, and (7) orogenesis that involved tectonic repetition of lithological units and a mechanism for taking products of surface weathering down to granulite facies P–T conditions and subsequently elevating them.


Author(s):  
STAVROS DEMERTZIS ◽  
VASILIKI DEMERTZI ◽  
KONSTANTINOS DEMERTZIS

Global climate change has already had observable effects on the environment. Glaciers have shrunk, ice on rivers and lakes is breaking up earlier, plant and animal ranges have shifted and trees are flowering sooner. Under these conditions, air pollution is likely to reach levels that create undesirable living conditions. Anthropogenic activities, such as industry, release large amounts of greenhouse gases into the atmosphere, increasing the atmospheric concentrations of these gases, thus significantly enhancing the greenhouse effect, which has the effect of increasing air heat and thus the speedup of climate change. The use of sophisticated data analysis methods to identify the causes of extreme pollutant values, the correlation of these values with the general climatic conditions and the general malfunctions that can be caused by prolonged air pollution can give a clear picture of current and future climate change. This paper presents a thorough study of preprocessing steps of data analytics and the appropriate big data architectures that are appropriate for the research study of Climate Change and Atmospheric Science.


2012 ◽  
Vol 9 (11) ◽  
pp. 4263-4278 ◽  
Author(s):  
N. Welti ◽  
E. Bondar-Kunze ◽  
M. Mair ◽  
P. Bonin ◽  
W. Wanek ◽  
...  

Abstract. Floodplain restoration changes the nitrate delivery pattern and dissolved organic matter pool in backwaters, though the effects these changes have are not yet well known. We performed two mesocosm experiments on floodplain sediments to quantify the nitrate metabolism in two types of floodplains. Rates of denitrification, dissimilatory nitrate reduction to ammonium (DNRA) and anammox were measured using 15N-NO3 tracer additions in mesocosms of undisturbed floodplain sediments originating from (1) restored and (2) disconnected sites in the Alluvial Zone National Park on the Danube River downstream of Vienna, Austria. DNRA rates were an order of magnitude lower than denitrification and neither rate was affected by changes in nitrate delivery pattern or organic matter quality. Anammox was not detected at any of the sites. Denitrification was out-competed by assimilation, which was estimated to use up to 70% of the available nitrate. Overall, denitrification was higher in the restored sites, with mean rates of 5.7 ± 2.8 mmol N m−2 h−1 compared to the disconnected site (0.6 ± 0.5 mmol N m−2 h−1). In addition, ratios of N2O : N2 were lower in the restored site indicating a more complete denitrification. Nitrate addition had neither an effect on denitrification, nor on the N2O : N2 ratio. However, DOM (dissolved organic matter) quality significantly changed the N2O : N2 ratio in both sites. Addition of riverine-derived organic matter lowered the N2O : N2 ratio in the disconnected site, whereas addition of floodplain-derived organic matter increased the N2O : N2 ratio in the restored site. These results demonstrate that increasing floodplains hydrological connection to the main river channel increases nitrogen retention and decreases nitrous oxide emissions.


Soil Research ◽  
1963 ◽  
Vol 1 (1) ◽  
pp. 74 ◽  
Author(s):  
KG Tiller

The mineralogy and chemistry of weathering and soil formation have been studied at 17 widely separated sites with contrasting climatic conditions on comparatively uniform dolerite in Tasmania. The clay and fine sand mineralogy of the soils has been related to their degree of weathering. These studies have shown large chemical and mineralogical changes accompanying the initial stages of weathering in some krasnozem soils. The reorganization of cobalt, zirconium, nickel, copper, molybdenum, manganese, and zinc during genesis of four soil groups has been considered in terms of the factors involved. Some of these results indicate that the clay horizon of the podzolic soils has probably been formed by weathering in situ. Seasonal waterlogging in certain horizons has strongly mfluenced the chemistry and mineralogy of weathering in many of these soils. This study has shown that the composition of the parent material has only influenced the geochemistry of trace elements in less weathered soils and that pedogenic factors assumed greater significance as the soils became more strongly weathered. Geomorphic processes had a marked influence on the geochemistry of some soils by the truncation of mature soil profiles.


2014 ◽  
Vol 2 ◽  
pp. 7-14
Author(s):  
P.D. Stahl ◽  
R.P. Sapkota

Nepal, situated in the Central Himalaya, occupies a total area of 14,718,100 ha. About 86% of the total land area is covered by hills and high mountains, and the remaining 14% are the flat lands of the Terai. Despite the uniqueness and variety of ecosystems across the ecological regions; the ecosystems, are very fragile and prone to degradation both inherently and in response to anthropogenic activities. A product of young geological and adverse climatic conditions, excessive resource use and associated environmental degradation in the country are responsible for the accelerated rate of natural disasters like soil erosion, land degradation and mass wasting, which in turn are making the ecosystems insubstantial. This review therefore aims to provide information on ecosystem restoration needs and initiatives in Nepal. With the existing natural and anthropogenic disturbances that are prevalent in the ecosystems of every ecological regions of Nepal, ecosystem restoration practices are of immediate need. Similarly, restoration approaches are of prime requisite in the protected areas also. Though started in project level basis and in conjunction with cross-cutting programs, ecosystem restoration interventions are in initial stage in Nepal. In this regard, future ecosystem restoration initiatives should be made successful with intensive efforts, appropriate technology and optimum inputs. It will be necessary to identify the areas requiring restoration, and plan for the implementation of appropriate activities for the successful restoration of degraded ecosystems in each ecological regions of Nepal.


Sign in / Sign up

Export Citation Format

Share Document