scholarly journals Tree ring effects and ice core acidities clarify the volcanic record of the first millennium

2015 ◽  
Vol 11 (1) ◽  
pp. 105-114 ◽  
Author(s):  
M. G. L. Baillie ◽  
J. McAneney

Abstract. In 2012 Plummer et al., in presenting the volcanic chronology of the Antarctic Law Dome ice core, chose to list connections to acid layers in other ice cores and also possible chronological coincidences between ice acid dates and the precise dates of frost damage, and/or reduced growth in North American bristlecone pines. We disagree with the chronological links indicated by Plummer et al. for the period before AD 700, and in this paper we show that a case can be made that better linkages between ice acid and tree ring effects occur for this period if the ice chronologies are systematically moved forward by around 7 years, consistent with a hypothesis published by Baillie in 2008. In the paper we seek to explore the proposition that frost damage rings in North American bristlecone pines are a very useful indicator of the dates of certain large explosive volcanic eruptions; the dating of major eruptions being critical for any clear understanding of volcanic forcing. This paper cannot prove that there is an error in the Greenland Ice Core Chronology 2005 (GICC05), and in equivalent ice chronologies from the Antarctic, however, it does provide a coherent argument for an apparent ice dating offset. If the suggested offset were to prove correct it would be necessary to locate where the error occurs in the ice chronologies and in this regard the dating of the increasingly controversial Icelandic Eldgjá eruption in the AD 930s, and the China/Korean Millennium eruption which occurs some 7 years after Eldgjá, may well be critical. In addition, if the offset were to be substantiated it would have implications for the alleged identification of tephra at 429.3 m in the Greenland GRIP core, currently attributed to the Italian volcano Vesuvius and used as a critical zero error point in the GICC05 chronology.

2014 ◽  
Vol 10 (2) ◽  
pp. 1799-1820
Author(s):  
M. G. L. Baillie ◽  
J. McAneney

Abstract. Various attempts have been made to link tree-ring and ice-core records, something vital for the understanding of the environmental response to major volcanic eruptions in the past. Here we demonstrate that, by taking note of the spacing between events, it is possible to clarify linkages between tree-response, as witnessed by frost rings in bristlecone pines from Western North America and volcanic acid deposition in ice cores. The results demonstrate that in the 6th and 7th centuries of the current era, and presumably for all earlier dates, the key European ice chronologies from the North Greenland Ice Core Project, namely Dye3, GRIP, NGRIP and NEEM appear to have been wrongly dated by 7 years, with the ice dates being too old. Similar offsets are observed for the Antarctic Law Dome and West Antarctic Ice Sheet Divide WDC06A ice-core chronologies that have been linked to the Greenland record. Importantly, the results clarify which frost rings in bristlecone pines are related to volcanic activity and which may be the result of other causes. In addition, it is possible to show that ice core researchers have used inappropriate linkages to tree effects to justify their chronology.


2020 ◽  
Vol 16 (4) ◽  
pp. 1565-1580
Author(s):  
Anders Svensson ◽  
Dorthe Dahl-Jensen ◽  
Jørgen Peder Steffensen ◽  
Thomas Blunier ◽  
Sune O. Rasmussen ◽  
...  

Abstract. The last glacial period is characterized by a number of millennial climate events that have been identified in both Greenland and Antarctic ice cores and that are abrupt in Greenland climate records. The mechanisms governing this climate variability remain a puzzle that requires a precise synchronization of ice cores from the two hemispheres to be resolved. Previously, Greenland and Antarctic ice cores have been synchronized primarily via their common records of gas concentrations or isotopes from the trapped air and via cosmogenic isotopes measured on the ice. In this work, we apply ice core volcanic proxies and annual layer counting to identify large volcanic eruptions that have left a signature in both Greenland and Antarctica. Generally, no tephra is associated with those eruptions in the ice cores, so the source of the eruptions cannot be identified. Instead, we identify and match sequences of volcanic eruptions with bipolar distribution of sulfate, i.e. unique patterns of volcanic events separated by the same number of years at the two poles. Using this approach, we pinpoint 82 large bipolar volcanic eruptions throughout the second half of the last glacial period (12–60 ka). This improved ice core synchronization is applied to determine the bipolar phasing of abrupt climate change events at decadal-scale precision. In response to Greenland abrupt climatic transitions, we find a response in the Antarctic water isotope signals (δ18O and deuterium excess) that is both more immediate and more abrupt than that found with previous gas-based interpolar synchronizations, providing additional support for our volcanic framework. On average, the Antarctic bipolar seesaw climate response lags the midpoint of Greenland abrupt δ18O transitions by 122±24 years. The time difference between Antarctic signals in deuterium excess and δ18O, which likewise informs the time needed to propagate the signal as described by the theory of the bipolar seesaw but is less sensitive to synchronization errors, suggests an Antarctic δ18O lag behind Greenland of 152±37 years. These estimates are shorter than the 200 years suggested by earlier gas-based synchronizations. As before, we find variations in the timing and duration between the response at different sites and for different events suggesting an interaction of oceanic and atmospheric teleconnection patterns as well as internal climate variability.


2002 ◽  
Vol 35 ◽  
pp. 217-223 ◽  
Author(s):  
Mika Kohno ◽  
Yoshiyuki Fujii

AbstractDuring the past 220 years, prominent signals of non-sea salt sulfate ion (nssSO42–) concentration exceeding the background level, including both marine biogenic and anthropogenic SO42–, were found in shallow ice cores from site H15 in East Antarctica and Site-J in southern Greenland. They were mostly correlated with past explosive volcanic eruptions. on the basis of this result and published results of shallow ice cores and snow pits at various locations on the Antarctic and Greenland ice sheets, eight common signals were found, of which six were assigned to the following explosive eruptions: El Chichόn, Mexico, in 1982; Agung, Indonesia, in 1963; Santa Maria, Guatemala, in 1902; Krakatau, Indonesia, in 1883; Cosiguina, Nicaragua, in 1835; an unknown volcano between 1831 and 1834; Tambora, Indonesia, in 1815; and an unknown volcano in 1809. Volcanic eruptions which have a potential to imprint their signals in both the Antarctic and Greenland ice sheets were characterized by (1) location in low latitudes between 20˚N and 10˚ S, and (2) eruption column height ≥25 km, corresponding to a volcanic explosivity index (VEI) ≥5.


2020 ◽  
Author(s):  
Peter M. Abbott ◽  
Gill Plunkett ◽  
Christophe Corona ◽  
Nathan J. Chellman ◽  
Joseph R. McConnell ◽  
...  

Abstract. Volcanic eruptions are a key source of climatic variability and reconstructing their past impact can improve our understanding of the operation of the climate system and increase the accuracy of future climate projections. Two annually resolved and independently dated palaeoarchives – tree rings and polar ice cores – can be used in tandem to assess the timing, strength and climatic impact of volcanic eruptions over the past ~ 2500 years. The quantification of post-volcanic climate responses, however, has at times been hampered by differences between simulated and observed temperature responses that raised questions regarding the robustness of the chronologies of both archives. While many chronological mismatches have been resolved, the precise timing and climatic impact of one or more major sulphate emitting volcanic eruptions during the 1450s CE, including the largest atmospheric sulphate loading event in the last 700 years, has not been constrained. Here we explore this issue through a combination of tephrochronological evidence and high-resolution ice-core chemistry measurements from the TUNU2013 ice core. We identify tephra from the historically dated 1477 CE eruption of Veiðivötn-Bárðarbunga, Iceland, in direct association with a notable sulphate peak in TUNU2013 attributed to this event, confirming that it can be used as a reliable and precise time-marker. Using seasonal cycles in several chemical elements and 1477 CE as a fixed chronological point shows that ages of 1453 CE and 1458/59 CE can be attributed, with a high accuracy, to two notable sulphate peaks. This confirms the accuracy of the NS1-2011 Greenland ice-core chronology over the mid- to late 15th century and corroborate the findings of recent volcanic reconstructions from Greenland and Antarctica. Overall, this implies that large-scale Northern Hemisphere climatic cooling affecting tree-ring growth in 1453 CE was caused by a Northern Hemisphere volcanic eruption in 1452 CE and then a Southern Hemisphere eruption, previously assumed to have triggered the cooling, occurred later in 1458 CE. The direct attribution of the 1477 CE sulphate peak to the eruption of Veiðivötn, the most explosive from Iceland in the last 1200 years, also provides the opportunity to assess its climatic impact. A tree-ring based reconstruction of Northern Hemisphere summer temperatures shows a cooling of −0.35 °C in the aftermath of the eruption, the 356th coldest summer since 500 CE, a relatively weak and spatially incoherent climatic response in comparison to the less explosive but longer-lasting Icelandic Eldgjá 939 CE and Laki 1783 CE eruptions, that ranked as the 205th and 9th coldest summers respectively. In addition, the Veiðivötn 1477 CE eruption occurred around the inception of the Little Ice Age and could be used as a chronostratigraphic marker to constrain the phasing and spatial variability of climate changes over this transition if it can be traced into more regional palaeoclimatic archives.


2007 ◽  
Vol 45 ◽  
pp. 178-182 ◽  
Author(s):  
Matthias Bigler ◽  
Anders Svensson ◽  
Jørgen Peder Steffensen ◽  
Patrik Kaufmann

AbstractSulphate (SO42–) is a major ion found in polar ice cores and is related to different aerosol sources and processes. Explosive volcanic eruptions, even far away, can cause distinct sulphate peaks in ice core records. Thus, a robust sulphate detection system which is suitable for fieldwork and which enables the measurement of sulphate at high temporal resolution is of great interest. In this study, we present the adaptation of a new continuous flow analysis system for sulphate that is based on a spectrophotometric method using dimethylsulfonazo III and an inline reactor column containing barium sulphate particles. The method shows a detection limit of ∽70 ng g–1 and a linear range up to at least 3000 ng g–1. It is simple, robust and less prone to interferences compared to the previously used method.


2021 ◽  
Vol 17 (2) ◽  
pp. 565-585
Author(s):  
Peter M. Abbott ◽  
Gill Plunkett ◽  
Christophe Corona ◽  
Nathan J. Chellman ◽  
Joseph R. McConnell ◽  
...  

Abstract. Volcanic eruptions are a key source of climatic variability, and reconstructing their past impact can improve our understanding of the operation of the climate system and increase the accuracy of future climate projections. Two annually resolved and independently dated palaeoarchives – tree rings and polar ice cores – can be used in tandem to assess the timing, strength and climatic impact of volcanic eruptions over the past ∼ 2500 years. The quantification of post-volcanic climate responses, however, has at times been hampered by differences between simulated and observed temperature responses that raised questions regarding the robustness of the chronologies of both archives. While many chronological mismatches have been resolved, the precise timing and climatic impact of two major sulfate-emitting volcanic eruptions during the 1450s CE, including the largest atmospheric sulfate-loading event in the last 700 years, have not been constrained. Here we explore this issue through a combination of tephrochronological evidence and high-resolution ice-core chemistry measurements from a Greenland ice core, the TUNU2013 record. We identify tephra from the historically dated 1477 CE eruption of the Icelandic Veiðivötn–Bárðarbunga volcanic system in direct association with a notable sulfate peak in TUNU2013 attributed to this event, confirming that this peak can be used as a reliable and precise time marker. Using seasonal cycles in several chemical elements and 1477 CE as a fixed chronological point shows that ages of 1453 CE and 1458 CE can be attributed, with high precision, to the start of two other notable sulfate peaks. This confirms the accuracy of a recent Greenland ice-core chronology over the middle to late 15th century and corroborates the findings of recent volcanic reconstructions from Greenland and Antarctica. Overall, this implies that large-scale Northern Hemisphere climatic cooling affecting tree-ring growth in 1453 CE was caused by a Northern Hemisphere volcanic eruption in 1452 or early 1453 CE, and then a Southern Hemisphere eruption, previously assumed to have triggered the cooling, occurred later in 1457 or 1458 CE. The direct attribution of the 1477 CE sulfate peak to the eruption of Veiðivötn, one of the most explosive from Iceland in the last 1200 years, also provides the opportunity to assess the eruption's climatic impact. A tree-ring-based reconstruction of Northern Hemisphere summer temperatures shows a cooling in the aftermath of the eruption of −0.35 ∘C relative to a 1961–1990 CE reference period and −0.1 ∘C relative to the 30-year period around the event, as well as a relatively weak and spatially incoherent climatic response in comparison to the less explosive but longer-lasting Icelandic Eldgjá 939 CE and Laki 1783 CE eruptions. In addition, the Veiðivötn 1477 CE eruption occurred around the inception of the Little Ice Age and could be used as a chronostratigraphic marker to constrain the phasing and spatial variability of climate changes over this transition if it can be traced in more regional palaeoclimatic archives.


2021 ◽  
Author(s):  
Markus Stoffel ◽  
Christophe Corona ◽  
Francis Ludlow ◽  
Michael Sigl ◽  
Heli Huhtamaa ◽  
...  

Abstract. The mid-17th century is characterized by a cluster of explosive volcanic eruptions in the 1630s and 1640s, deteriorating climatic conditions culminating in the Maunder Minimum as well as political instability and famine in regions of Western and Northern Europe as well as China and Japan. This contribution investigates the sources of the eruptions of the 1630s and 1640s and their possible impact on contemporary climate using ice-core, tree-ring and historical evidence, but will also look into the socio-political context in which they occurred and the human responses they may have triggered. Three distinct sulfur peaks are found in the Greenland ice core record in 1637, 1641–42 and 1646. In Antarctica, only one unambiguous sulfate spike is recorded, peaking in 1642. The resulting bipolar sulfur peak in 1641–1642 can likely be ascribed to the eruption of Mount Parker (6° N, Philippines) on December 26, 1640, but sulfate emitted from Koma-ga-take (42° N, Japan) volcano on July 31, 1641, has potentially also contributed to the sulphate concentrations observed in Greenland at this time. The smaller peaks in 1637 and 1646 can be potentially attributed to the eruptions of Hekla (63° N, Iceland) and Shiveluch (56° N, Russia), respectively. To date, however, none of the candidate volcanoes for the mid-17th century sulphate peaks have been confirmed with tephra preserved in ice cores. Tree-ring and written sources point to severe and cold conditions in the late 1630s and early 1640s in various parts of Europe, and to poor harvests. Yet the early 17th century was also characterized by widespread warfare across Europe – and in particular the Thirty Years’ War (1618–1648), rendering any attribution of socio-economic crisis to volcanism challenging. In China and Japan, historical sources point to extreme droughts and famines starting in the late 1630s, and thus preceding the eruptions by some years. The case of the eruption cluster in the late 1630s and early 1640s and the climatic and societal conditions recorded in its aftermath thus offer a textbook example of difficulties in (i) unambiguously distinguishing volcanically induced cooling, wetting or drying from natural climate variability, and (ii) attributing political instability, harvest failure and famines solely to volcanic climatic impacts. This example shows that the impacts of past volcanism must always be studied within the contemporary socio-economic contexts, but that it is also time to most past reductive framings and sometimes reactionary oppositional stances in which climate (and environment more broadly) either is or is not deemed an important contributor to major historical events.


1988 ◽  
Vol 30 (3) ◽  
pp. 315-330 ◽  
Author(s):  
Julie M. Palais ◽  
Philip R. Kyle

The chemical composition of ice containing tephra (volcanic ash) layers in 22 sections of the Byrd Station ice core was examined to determine if the volcanic eruptions affected the chemical composition of the atmosphere and precipitation in the vicinity of Byrd Station. The liquid conductivity, acidity, sulfate, nitrate, aluminum, and sodium concentrations of ice samples deposited before, during, and after the deposition of the tephra layers were analyzed. Ice samples that contain tephra layers have, on average, about two times more sulfate and three to four times more aluminum than nonvolcanic ice samples. The acidity of ice samples associated with tephra layers is lowered by hydrolysis of silicate glass and minerals. Average nitrate, sodium, and conductivity are the same in all samples. Because much of the sulfur and chlorine originally associated with these eruptions may have been scavenged by ash particles, the atmospheric residence time of these volatiles would have been minimized. Therefore the eruptions probably had only a small effect on the composition of the Antarctic atmosphere and a negligible effect on local or global climate.


2007 ◽  
Vol 67 (1) ◽  
pp. 57-68 ◽  
Author(s):  
Matthew W. Salzer ◽  
Malcolm K. Hughes

AbstractMany years of low growth identified in a western USA regional chronology of upper forest border bristlecone pine (Pinus longaeva and Pinus aristata) over the last 5000 yr coincide with known large explosive volcanic eruptions and/or ice core signals of past eruptions. Over the last millennium the agreement between the tree-ring data and volcano/ice-core data is high: years of ring-width minima can be matched with known volcanic eruptions or ice-core volcanic signals in 86% of cases. In previous millennia, while there is substantial concurrence, the agreement decreases with increasing antiquity. Many of the bristlecone pine ring-width minima occurred at the same time as ring-width minima in high latitude trees from northwestern Siberia and/or northern Finland over the past 4000–5000 yr, suggesting climatically-effective events of at least hemispheric scale. In contrast with the ice-core records, the agreement between widely separated tree-ring records does not decrease with increasing antiquity. These data suggest specific intervals when the climate system was or was not particularly sensitive enough to volcanic forcing to affect the trees, and they augment the ice core record in a number of ways: by providing confirmation from an alternative proxy record for volcanic signals, by suggesting alternative dates for eruptions, and by adding to the list of years when volcanic events of global significance were likely, including the mid-2nd-millennium BC eruption of Thera.


2021 ◽  
Author(s):  
Imogen Gabriel ◽  
Gill Plunkett ◽  
Peter Abbott ◽  
Bergrún Óladóttir ◽  
Joseph McConnell ◽  
...  

<p>Volcanic eruptions are considered as one of the primary natural drivers for changes in the global climate system and understanding the impact of past eruptions on the climate is integral to adopt appropriate responses towards future volcanic eruptions.</p><p>The Greenland ice core records are dominated by Icelandic eruptions, with several volcanic systems (Katla, Hekla, Bárðarbunga-Veiðivötn and Grimsvötn) being highly active throughout the Holocene. A notable period of increased Icelandic volcanic activity occurred between 500-1250 AD and coincided with climatic changes in the North Atlantic region which may have facilitated the Viking settlement of Greenland and Iceland. However, a number of these volcanic events are poorly constrained (duration and magnitude). Consequently, the Greenland ice cores offer the opportunity to reliably reconstruct past Icelandic volcanism (duration, magnitude and frequency) due to their high-resolution, the proximity of Iceland to Greenland and subsequent increased likelihood of volcanic fallout deposits (tephra particles and sulphur aerosols) being preserved. However, both the high frequency of eruptions between 500-1250 AD and the geochemical similarity of Iceland’s volcanic centres present challenges in making the required robust geochemical correlations between the source volcano and the ice core records and ultimately reliably assessing the climatic-societal impacts of these eruptions.</p><p>To address this, we use two Greenland ice core records (TUNU2013 and B19) and undertake geochemical analysis on tephra from the volcanic events in the selected time window which have been detected and sampled using novel techniques (insoluble particle peaks and sulphur acidity peaks). Further geochemical analysis of proximal material enables robust correlations to be made between the events in the ice core records and their volcanic centres. The high-resolution of these polar archives provides a precise age for the event and when utilised alongside other proxies (i.e. sulphur aerosols), both the duration and magnitude of these eruptions can be constrained, and the climatic-societal impacts of these eruptions reliably assessed.</p>


Sign in / Sign up

Export Citation Format

Share Document