scholarly journals Increasing risks of apple tree frost damage under climate change

2019 ◽  
Vol 157 (3-4) ◽  
pp. 515-525 ◽  
Author(s):  
Peter Pfleiderer ◽  
Inga Menke ◽  
Carl-Friedrich Schleussner

AbstractAnthropogenic climate change is affecting agriculture and crop production. The responses of horticultural and agricultural systems to changing climatic conditions can be non-linear and at times counter-intuitive. Depending on the characteristics of the system, the actual impact can arise as a result of a combination of climate hazards or compound events. Here, we show that compound events can lead to increased risk of frost damage for apple fruit trees in Germany in a 2 °C warmer world of up to 10% relative to present day. Although the absolute number of frost days is declining, warmer winters also lead to earlier blossom of fruit trees, which in turn can lead to regionally dependent increased risks of the occurrence of frost days after apple blossom. In southern Germany, warmer winters may also lead to an increase in years in which apple yield is negatively affected by a lack of sufficient amount of cold days to trigger the seasonal response of the trees. Our results show how cropping system responses to seasonal climate can lead to unexpected effects of increased risk of frost damage as a result of warmer winters. An improved understanding of ecosystem responses to changes in climate signals is important to fully assess the impacts of climate change.

Author(s):  
D. Srikanth ◽  
G. Kranthi Rekha ◽  
A. Praveena Lakshmi ◽  
P. Vimatha

Vegetable crops are sensitive to temperature, most of them require specific temperatures for optimum yield and quality. Climate change will effect capsicum production through increase in pollination failures, floral abortion, reduced fruit size and quality under higher temperature, increased incidence of physiological disorders (sun scald and blossom end rot), increased risk of soil borne diseases (leaf blight and fruit rot). Increasing temperatures will also influence greenhouse crop production, particularly in sub-tropical regions. In temperate areas there will be less effect and sowing time can be adjusted accordingly. Irrigation requirement will be high because of higher evaporative demand. So there is a need to adjust the sowing time according to changing temperatures. Selecting cultivars which are more tolerant are adaptable to changing environmental conditions. So polyhouses are best solution to avoid losses due to unfavourable climatic conditions like high temperature, heavy rains, strong winds and hailstones etc. Integrated pest and disease management (IPDM) will be an important tool to adapt to changing climate. Mulching with different mulching materials will help in reducing the incidence of soil born diseases like fruit rot and leaf blight. Scientists have to breed the cultivars, suitable to grow under changing temperature, resistant to insect, pest and diseases. To cope up with the effects of climate change we have to follow good production technology in capsicum and also to increase the yield and for good quality of the produce.


2021 ◽  
Vol 13 (19) ◽  
pp. 10495
Author(s):  
Zoia Arshad Awan ◽  
Tasneem Khaliq ◽  
Muhammad Masood Akhtar ◽  
Asad Imran ◽  
Muhammad Irfan ◽  
...  

Cotton production is highly vulnerable to climate change, and heat stress is a major constraint in the cotton zone of Punjab, Pakistan. Adaptation is perceived as a critical step to deal with forecasted and unexpected climatic conditions. The objective of this study was to standardize and authenticate a cotton crop model based on climate and crop husbandry data in order to develop an adaptation package for cotton crop production in the wake of climate change. For the study, the data were collected from the cotton-growing areas of Punjab, viz. Bahawalpur and Khanewal. After the calibration and validation against field data, the Cropping System Model CSM–CROPGRO–Cotton in the shell of the decision support system for agro-technology transfer (DSSAT) was run with a future climate generated under two representative concentrations pathways (RCPs), viz. RCPs 4.5 and 8.5 with five global circulation models (GCMs). The whole study showed that a model is an artistic tool for examining the temporal variation in cotton and determining the potential impact of planting dates on crop growth, phenology, and yield. The results showed that the future climate would have drastic effects on cotton production in the project area. Reduction in seed cotton yield (SCY) was 25.7% and 32.2% under RCPs 4.5 and 8.5, respectively. The comparison of five GCMs showed that a hot/wet climate would be more damaging than other scenarios. The simulations with different production options showed that a 10% and 5% increase in nitrogen and plant population, respectively, compared to the present would be the best strategy in the future. The model further suggested that planting conducted 15 days earlier, combined with the use of water and nitrogen (fertigation), would help to improve yield with 10% less water under the future climate. Overall, the proposed adaptation package would help to recover 33% and 37% of damages in SCY due to the climate change scenarios of RCP 4.5 and 8.5, respectively. Furthermore, the proposed package would also help the farmers increase crop yield by 7.5% over baseline (current) yield.


2020 ◽  
Author(s):  
Matti Kummu ◽  
Matias Heino ◽  
Maija Taka ◽  
Olli Varis ◽  
Daniel Viviroli

<p>The majority of global food production, as we know it, is based on agricultural practices developed within stable Holocene climate conditions. Climate change is altering the key conditions for human societies, such as precipitation, temperature and aridity. Their combined impact on altering the conditions in areas where people live and grow food has not yet, however, been systematically quantified on a global scale. Here, we estimate the impacts of two climate change scenarios (RCP 2.6, RCP 8.5) on major population centres and food crop production areas at 5 arc-min scale (~10 km at equator) using Holdridge Life Zones (HLZs), a concept that incorporates all the aforementioned climatic characteristics. We found that if rapid growth of GHG emissions is not halted (RCP 8.5), in year 2070, one fifth of the major food production areas and one fourth of the global population centres would experience climate conditions beyond the ones where food is currently produced, and people are living. Our results thus reinforce the importance of following the RCP 2.6 path, as then only a small fraction of food production (5%) and population centres (6%) would face such unprecedented conditions. Several areas experiencing these unprecedented conditions also have low resilience, such as those within Burkina Faso, Cambodia, Chad, and Guinea-Bissau. In these countries over 75% of food production and population would experience unprecedented climatic conditions under RCP 8.5. These and many other hotspot areas require the most urgent attention to secure sustainable development and equity.</p>


2015 ◽  
Vol 49 (6) ◽  
Author(s):  
Savita Ahlawat ◽  
Dhian Kaur

At present, climate change is one of the most challenging environmental issues as it poses potential threat to different sectors of economy at global level. Agriculture being an open activity is primarily dependent on climatic factors and change in climatic conditions affects the production, quality and quantity of crop production in an area. This paper attempts to study effects of only two parameters of climate i.e. temperature and rainfall on agricultural production in northwest region of India. Northwest region comprising of Punjab, Haryana, Himachal Pradesh and Jammu Kashmir states is the greatest food bowl of India contributing to its food security. The analysis of mean monthly rainfall and maximum and minimum temperatures (1901-2006) shows no significant change in temperature and rainfall conditions from 1901 to 1960; but afterward the change is more pronounced. On the whole any significant change in climatic conditions will not only challenge the food production of the region but also challenge the country’s food security situation.


Social Change ◽  
2020 ◽  
pp. 004908572092436
Author(s):  
Prasanta Moharaj ◽  
Satyapriya Rout

This article attempts to examine the negative impact of climate change on agricultural livelihood and human social life. Natural climatic variations have always been a challenge for human sustenance as they are predicated on a host of factors that include natural, human-made and unbalanced environmental conditions. India too, with its geographic zones such as mountains, small islands, wetlands, coastal areas, deserts, semi-arid lands and plains, is exposed to challenges of climatic change. The impact of climate is particularly severe on the livelihoods of the rural poor. For instance, people living near coastal regions are constantly prone to severe floods. This study specifically focusses on coastal Odisha and the impact of floods which have been triggered by climate change. The study, looking at the effect on crop production and socio-economic conditions, has followed a two-pronged approach, conducting a field survey and collecting data from secondary sources.


2021 ◽  
Author(s):  
Matti Kummu ◽  
Matias Heino ◽  
Maija Taka ◽  
Olli Varis ◽  
Daniel Viviroli

<p>The majority of food production is based on agricultural practices developed for the stable Holocene climatic conditions, which now are under risk for rapid change due to climate change. Although various studies have assessed the potential changes in climatic conditions and their projected impacts on yields globally, there is no clear understanding on the climatic niche of the current food production. Nor, which areas are under risk of falling outside this niche.</p><p>In this study we aim first at defining the novel concept Safe Climatic Space (SCS) by using a combination of three key climatic parameters. SCS is defined here as the climate conditions to which current food production systems (here crop production and livestock production separately) are accustomed to, an analogue to Safe Operating Space (SOS) concepts such as Planetary Boundaries and human climate niche. We use a combination of selected key climatic factors to define the SCS through the Holdridge Life Zone (HLZ) concept. It allows us to first define the SCS based on three climatic factors (annual precipitation, biotemperature and aridity) and to identify which food production areas would stay within it under changed future climate conditions. </p><p>We show that a rapid and unhalted growth of GHG emissions (SSP5-8.5) could force 31% (25-37% with 5th-95th percentile confidence interval) of global food crop production and 34% (26-43%) of livestock production beyond the SCS by 2081-2100. Our results underpin the importance of committing to a low emission scenario (SSP1-2.6), whereupon the extent of food production facing unprecedented conditions would be a fraction: 8% (4-10%) for crop production and 4% (2-8%) for livestock production. The most vulnerable areas are the ones at risk of leaving SCS with low resilience to cope with the change, particularly South and Southeast Asia and Africa’s Sudano-Sahelian Zone. </p><p>Our findings reinforce the existing research in suggesting that climate change forces humanity into a new era of reduced validity of past experiences and dramatically increased uncertainties. Future solutions should be concentrated on actions that would both mitigate climate change as well as increase resilience in food systems and societies, increase the food production sustainability that respects key planetary boundaries, adapt to climate change by, for example, crop migration and foster local livelihoods especially in the most critical areas.</p>


2020 ◽  
Author(s):  
Inga Menke ◽  
Peter Pfleiderer ◽  
Carl-Friedrich Schleussner

<p>The impacts of global warming on agriculture and crop production are already visible today and are projected to intensify in the future. As horticultural and agricultural systems are complex organisms, their responses to changing climate can be non-linear and at times counter-intuitive. These systems undergo yearly cycles of growth with different plant characteristics in each of their phenological phases. They are thus especially sensitive to changes in seasonality besides changes in the annual mean and single extreme events.</p><p>Here we show that as a result of warmer winters, the risk of frost damages on apple trees in Germany is projected to be about 10% higher in a 2°C world compared to today. Warmer winters lead to less frost days but also to earlier apple blossom. This can result in overall increase in years where frost days occur after blossom.</p><p>Using large ensemble climate simulations, we analyze this compound event of frost days after blossom – frost days after warm winters. Although the projected shift in blossom day and the decrease in frost days is relatively homogeneous over Germany, the change in frost risk varies considerably between regions. Our results highlight the importance of treating frost risk as a compound event of frost days after warm winters instead of comparing the average shift in blossom days with the decrease in frost days.</p><p>Reference: Pfleiderer, P., Menke, I. & Schleussner, C.-F. Increasing risks of apple tree frost damage under climate change. Clim. Change (2019). doi:10.1007/s10584-019-02570-y</p>


2021 ◽  
Author(s):  
LUCAS Eduardo OLIVEIRA-APARECIDO ◽  
Alexson Filgueiras Dutra ◽  
Pedro Antonio Lorençone ◽  
Francisco de Alcântara Neto ◽  
João Antonio Lorençon ◽  
...  

Abstract Identify the climatic characterization of a region and its spatial and temporal variation, as well as its changes in the face of climate change events, is essential for agrometeorological studies because they can assist in the planning of strategies that reduce the negative impacts generated in the cultures exposed to critical climatic conditions. Thus, this study aimed to characterize the climatic conditions of the MATOPIBA region and its changes in scenarios of climate change using the classification index of Thornthwaite (1948). Daily time series of rainfall and temperature data in the 1950–1990 period were used, arranged in a 0.25º × 0.25º grid, covering 467 points over the studied region. The data set was used to estimate climatological water balance and climate index Thornthwaite (1948), and obtain the trends climatological according to IPCC (2014) climate change projections, with changes in the average air temperature (+ 1.5°C and − 1.5°C) and precipitation (+ 30% and − 30%). The MATOPIBA region is characterized by its humid, dry subhumid, and Moist subhumid climate, with the rainy seasons, between October and April, and drought, from May to September, well defined. In MATOPIBA climate change scenarios, climatic extreme indices tend to alter the pattern, frequency, and distribution of climate class, which can increase climate risk and impact crop production. Therefore, the results obtained can be used to develop strategies to mitigate the vulnerability of crops to climate change conditions.


2016 ◽  
Vol 3 (3) ◽  
pp. 369-378 ◽  
Author(s):  
Rajib Jodder ◽  
Mohammad Asadul Haque ◽  
Tapan Kumar ◽  
M Jahiruddin ◽  
M Zulfikar Rahman ◽  
...  

A survey was conducted to determine the effect of climate change on crop production and water quality in 12 villages of Deluty and Garaikhali unions under Paikgacha upazila of Khulna district, Bangladesh. Total of 100 farmers were interviewed using a pre-tested questionnaire. The climatic hazards as reported on the study area are salinity, cyclone, drought, hailstorm, river erosion and waterlogging, of them salinity is the most dominant hazard. Due to salinity the cropping system has undergone changes. Many crops and varieties have been either extinct or their cultivation has come down. Both soil and water are severely affected by salinity. Most of the farmers (90%) use pond water for irrigation and the majority farmers use pond and rain waters for drinking purpose. Results of the present study serves as a good basis for in-depth study to achieve successful crop production in the south west coastal area of Bangladesh.Res. Agric., Livest. Fish.3(3): 369-378, December 2016


Agriculture ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 461
Author(s):  
Gourav Sharma ◽  
Swati Shrestha ◽  
Sudip Kunwar ◽  
Te-Ming Tseng

Weeds are among the major constraints to any crop production system, reducing productivity and profitability. Herbicides are among the most effective methods to control weeds, and reliance on herbicides for weed control has increased significantly with the advent of herbicide-resistant crops. Unfortunately, over-reliance on herbicides leads to environmental-health issues and herbicide-resistant weeds, causing human health and ecological concerns. Crop diversification can help manage weeds sustainably in major crop production systems. It acts as an organizing principle under which technological innovations and ecological insights can be combined to manage weeds sustainably. Diversified cropping can be defined as the conscious inclusion of functional biodiversity at temporal and/or spatial levels to improve the productivity and stability of ecosystem services. Crop diversification helps to reduce weed density by negatively impacting weed seed germination and weed growth. Additionally, diversified farming systems are more resilient to climate change than monoculture systems and provide better crop yield. However, there are a few challenges to adopting a diversified cropping system, ranging from technology innovations, government policies, farm-level decisions, climate change, and market conditions. In this review, we discuss how crop diversification supports sustainable weed management, the challenges associated with it, and the future of weed management with respect to the diversification concept.


Sign in / Sign up

Export Citation Format

Share Document