scholarly journals Applications of Nanotechnology in Plant Growth and Crop Protection: A Review

Molecules ◽  
2019 ◽  
Vol 24 (14) ◽  
pp. 2558 ◽  
Author(s):  
Yifen Shang ◽  
Md. Kamrul Hasan ◽  
Golam Jalal Ahammed ◽  
Mengqi Li ◽  
Hanqin Yin ◽  
...  

In the era of climate change, global agricultural systems are facing numerous, unprecedented challenges. In order to achieve food security, advanced nano-engineering is a handy tool for boosting crop production and assuring sustainability. Nanotechnology helps to improve agricultural production by increasing the efficiency of inputs and minimizing relevant losses. Nanomaterials offer a wider specific surface area to fertilizers and pesticides. In addition, nanomaterials as unique carriers of agrochemicals facilitate the site-targeted controlled delivery of nutrients with increased crop protection. Due to their direct and intended applications in the precise management and control of inputs (fertilizers, pesticides, herbicides), nanotools, such as nanobiosensors, support the development of high-tech agricultural farms. The integration of biology and nanotechnology into nonosensors has greatly increased their potential to sense and identify the environmental conditions or impairments. In this review, we summarize recent attempts at innovative uses of nanotechnologies in agriculture that may help to meet the rising demand for food and environmental sustainability.

2010 ◽  
Vol 4 (1) ◽  
pp. 99-104 ◽  
Author(s):  
F. Ruget ◽  
J.-C. Moreau ◽  
M. Ferrand ◽  
S. Poisson ◽  
P. Gate ◽  
...  

Abstract. The effects of climate change on forage and crop production are an important question for the farmers and more largely for the food security in the world. Estimating the effect of climate change on agricultural production needs the use of two types of tools: a model to estimate changes in national or local climates and an other model using climatic data to estimate the effects on vegetation. In this paper, we will mainly present the effects of climate change on climatic features, the variability of criteria influencing crop production in various regions of France and some possible effects on crops.


2021 ◽  
Vol 5 ◽  
Author(s):  
Nicholas G. Karavolias ◽  
Wilson Horner ◽  
Modesta N. Abugu ◽  
Sarah N. Evanega

Climate change imposes a severe threat to agricultural systems, food security, and human nutrition. Meanwhile, efforts in crop and livestock gene editing have been undertaken to improve performance across a range of traits. Many of the targeted phenotypes include attributes that could be beneficial for climate change adaptation. Here, we present examples of emerging gene editing applications and research initiatives that are aimed at the improvement of crops and livestock in response to climate change, and discuss technical limitations and opportunities therein. While only few applications of gene editing have been translated to agricultural production thus far, numerous studies in research settings have demonstrated the potential for potent applications to address climate change in the near future.


2020 ◽  
Vol 26 (8) ◽  
pp. 823-829
Author(s):  
E. V. Malysh

A city’s potential for food self-sufficiency is expected to increase through the distribution of innovative, high-tech, green agricultural practices of producing food in an urban environment, which can improve the city’s food security due to increased food accessibility in terms of quantity and quality. Aim. Based on the systematization of theoretical approaches and analysis of institutional aspects, the study aims to propose ways to strengthen the city’s food security by improving food supply in urban areas, increasing the socio-economic and environmental sustainability of urban food systems, and changing the diet of urban residents.Tasks. The authors propose methods for the development of urban agricultural production in a large industrial city based on the principles of green economy and outline the range of strategic urban activities aimed at implementing green agricultural production technologies associated with the formation and development of the culture of modern urban agricultural production.Methods. This study uses general scientific methods of cognition to examine the specificity of objectives of strengthening a city’s food security by improving the quality of food supply to the population. Methods of comparison, systems analysis, systematization of information, and the monographic method are also applied.Results. A strategic project for the development of urban agricultural systems through the implementation and green development of advanced urban agricultural technologies is described. Green development mechanisms will create conditions for the city’s self-sufficiency in terms of organic and safe products, functioning of short supply chains, and green urban agriculture.Conclusions. Managing the growth of urban agriculture will promote the use of highly effective, easily controlled, resource-efficient, eco-friendly, weather- and season-independent, multi-format urban agricultural technologies. The study describes actions aimed at creating conditions for stabilizing a city’s high-quality food self-sufficiency with allowance for the growing differentiation of citizen needs.


Author(s):  
Maria Polozhikhina ◽  

Climate conditions remain one of the main risk factors for domestic agriculture, and the consequences of global climate change are ambiguous in terms of prospects for agricultural production in Russia. This paper analyzes the impact of climate change on the country’s food security from the point of view of its self-sufficiency in grain primarily. Specific conditions prevailing on the Crimean peninsula are also considered.


Author(s):  
Mohamed Nasser Baco

Previous studies suggested that maize is set to become a cash crop while ensuring food security better than any other crop. However, climate change has become one of the key production constraints that are now hampering and threatening the sustainability of maize production systems. We conducted a study to better understand changes here defined as adaptations made by smallholder farmers to ensure food security and improve income through maize production in a climate change context. Our results show that maize farmers in northern Benin mainly rely on traditional seeds. Drought as abiotic stress is perceived by farmers in many agro-ecological zones as a disruptive factor for crop production, including maize. When drought is associated with pest damages, both the quantity (i.e. yield) and the quality (i.e. attributes) of products/harvests are negatively affected. The adverse effects of drought continue to reduce production in different agro-ecological zones of the country, because of the lack of widespread adoption of tolerant varieties. The study suggests actions towards the production of drought-tolerant maize seeds, a promotion of seed companies, the organization of actors and value chains. Apart from climate change, the promotion of value chains is also emerging as one of the important aspects to take into account to sustain maize production in Benin.


2021 ◽  
Vol 2 (1) ◽  
pp. 1-16
Author(s):  
José G. Vargas-Hernández ◽  
Olga E. Domené-Painenao

This paper has the aim to analyze the implications of the transition of ecosystem services based on urban agro ecology. It advances on the debate over the negative effects of the traditional and industrial oriented agricultural production on the ecosystem services, food systems, climate change, etc. and analyses the principles, methods, and some practices that support the transition to urban agro ecology. The method employed is the analytical of the theoretical and empirical literature review. It concludes that a transition from traditional and industrial-oriented agriculture towards more urban agro ecology is inevitable to improve the ecological and environmental services, the economic efficiency, the social equity and justice, and the environmental sustainability of cities.


Plants ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 34 ◽  
Author(s):  
Ali Raza ◽  
Ali Razzaq ◽  
Sundas Mehmood ◽  
Xiling Zou ◽  
Xuekun Zhang ◽  
...  

Agriculture and climate change are internally correlated with each other in various aspects, as climate change is the main cause of biotic and abiotic stresses, which have adverse effects on the agriculture of a region. The land and its agriculture are being affected by climate changes in different ways, e.g., variations in annual rainfall, average temperature, heat waves, modifications in weeds, pests or microbes, global change of atmospheric CO2 or ozone level, and fluctuations in sea level. The threat of varying global climate has greatly driven the attention of scientists, as these variations are imparting negative impact on global crop production and compromising food security worldwide. According to some predicted reports, agriculture is considered the most endangered activity adversely affected by climate changes. To date, food security and ecosystem resilience are the most concerning subjects worldwide. Climate-smart agriculture is the only way to lower the negative impact of climate variations on crop adaptation, before it might affect global crop production drastically. In this review paper, we summarize the causes of climate change, stresses produced due to climate change, impacts on crops, modern breeding technologies, and biotechnological strategies to cope with climate change, in order to develop climate resilient crops. Revolutions in genetic engineering techniques can also aid in overcoming food security issues against extreme environmental conditions, by producing transgenic plants.


Atmosphere ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 536
Author(s):  
Marinos Markou ◽  
Anastasios Michailidis ◽  
Efstratios Loizou ◽  
Stefanos A. Nastis ◽  
Dimitra Lazaridou ◽  
...  

Agriculture is highly dependent on climate change, and Cyprus especially is experiencing its impacts on agricultural production to a greater extent, mainly due to its geographical location. The adaptation of farming to the effects of global climate change may lead to the maximization of agricultural production, which is an important and desirable improvement. The main aim of this paper is to rank and quantify the impacts of climate change on the agricultural sector of Cyprus, through a multi-round Delphi survey seeking a consensus agreement in a group of experts. A multidisciplinary group of 20 experts stated their willingness-to-pay for various impacts of climate change. By applying this method, the individual impacts of climate change on crop production and water resources were brought into the modeling effort on equal footing with cost values. The final cost impact estimate represents the total estimated cost of climate change in the agricultural sector. According to the results, this cost reaches EUR 25.08 million annually for the agricultural sector, and EUR 366.48 million for the whole country. Therefore, it is expected that in the seven-year programming period 2014–2020 the total cost of climate change on agriculture ranges from EUR 176 to EUR 2565 million. The most significant impacts are due to the increasing level of CO2 in the atmosphere and the burden of biodiversity and ecosystems.


2015 ◽  
Vol 49 (6) ◽  
Author(s):  
Savita Ahlawat ◽  
Dhian Kaur

At present, climate change is one of the most challenging environmental issues as it poses potential threat to different sectors of economy at global level. Agriculture being an open activity is primarily dependent on climatic factors and change in climatic conditions affects the production, quality and quantity of crop production in an area. This paper attempts to study effects of only two parameters of climate i.e. temperature and rainfall on agricultural production in northwest region of India. Northwest region comprising of Punjab, Haryana, Himachal Pradesh and Jammu Kashmir states is the greatest food bowl of India contributing to its food security. The analysis of mean monthly rainfall and maximum and minimum temperatures (1901-2006) shows no significant change in temperature and rainfall conditions from 1901 to 1960; but afterward the change is more pronounced. On the whole any significant change in climatic conditions will not only challenge the food production of the region but also challenge the country’s food security situation.


2015 ◽  
Vol 95 (6) ◽  
pp. 1049-1072 ◽  
Author(s):  
Joanne R. Thiessen Martens ◽  
Martin H. Entz ◽  
Mark D. Wonneck

Thiessen Martens, J. R., Entz, M. H. and Wonneck, M. D. 2015. Review: Redesigning Canadian prairie cropping systems for profitability, sustainability, and resilience. Can. J. Plant Sci. 95: 1049–1072. Redesign of agricultural systems according to ecological principles has been proposed for the development of sustainable systems. We review a wide variety of ecologically based crop production practices, including crop varieties and genetic diversity, crop selection and rotation, cover crops, annual polyculture, perennial forages, perennial grains, agroforestry systems, reducing tillage, use of animal manures and green manures, soil biological fertility, organic production systems, integrated crop–livestock systems, and purposeful design of farm landscapes (farmscaping), and discuss their potential role in enhancing the profitability, environmental sustainability, and resilience of Canadian prairie cropping systems. Farming systems that most closely mimic natural systems through appropriate integration of diverse components, within a context of supportive social and economic structures, appear to offer the greatest potential benefits, while creating a framework in which to place all other farming practices. Our understanding of ecological relationships within agricultural systems is currently lacking, and a major shift in research, education, and policy will be required to purposefully and proactively redesign Canadian prairie agricultural systems for long-term sustainability.


Sign in / Sign up

Export Citation Format

Share Document