Copper(II) removal by natural siderite (FeCO3) from surface and groundwaters

Author(s):  
Lisa C. Füllenbach ◽  
Jeffrey Paolo H. Perez ◽  
Helen M. Freeman ◽  
Andrew N. Thomas ◽  
Liane G. Benning ◽  
...  

<p>Anthropological use of land and resources releases vast amounts of waste into surface waters and aquifers. Copper(II) is one of the most widely occurring heavy metal contaminants, introduced into the environment from industrial discharge, landfill leakage, agricultural and mining sources. Common remediation strategies for redox-sensitive Cu(II) are based on adsorption or phytoremediation methods. To experimentally test the efficiency of Cu(II) retention by inorganic redox reaction processes suitable for in situ surface- and groundwater remediation applications, we used siderite (FeCO<sub>3</sub>), which is abundant in anoxic sediments and soils and as a carbonate highly soluble in acidic environments. Its dissolution increases alkalinity and releases highly reactive, redox sensitive Fe(II). This aqueous ferrous iron can act as 1) a precursor for Fe(III) (hydr)oxides in oxic conditions, which are effective sorbents of heavy metals, and 2) a reducing agent under reducing conditions, where it can form a strong redox couple with Cu(II). We investigated the long term (1008 h) removal of aqueous Cu(II) through siderite dissolution batch experiments under oxic and anoxic conditions and monitored changes in the aqueous concentrations of Cu and Fe, pH and the reacted solids morphology over time. Cu adsorption and speciation on the reaction products was determined by X-ray absorption and photoelectron spectroscopies.</p><p>Under oxic conditions, increasing alkalinity led to a rapid increase in solution pH and the precipitation of nanoparticulate goethite and hematite from the released ferrous iron. After 1008 h of reaction, 80 % of the dissolved Cu(II) were removed from solution by sorption, whereby up to >30 % of this sorbed Cu(II) was reduced to Cu(I). Under anoxic conditions, the solution pH increased abruptly and copper uptake occurred more than twice as fast as under oxic conditions. Notably, the released Fe(II) was oxidized by Cu(II) leading to the precipitation of lepidocrocite, while all copper was removed from solution with >70 % of Cu(II) being reduced to Cu(0).</p><p>Our results suggest that 1) redox reactions between aqueous Cu(II) and Fe(II) promote coupled dissolution-precipitation and adsorption mechanisms responsible for Cu(II) removal, and that 2) siderite is a low-cost and effective material that is potentially useful for in situ remediation in either oxygenated or reduced environments.</p>

Author(s):  
T. G. Ambaye ◽  
M. Vaccari ◽  
E. D. van Hullebusch ◽  
A. Amrane ◽  
S. Rtimi

AbstractCurrently, due to the rapid growth of urbanization and industrialization in developing countries, a large volume of wastewater is produced from industries that contain chemicals generating high environmental risks affecting human health and the economy if not treated properly. Consequently, the development of a sustainable low-cost wastewater treatment approach has attracted more attention of policymakers and scientists. The present review highlights the recent applications of biochar in removing organic and inorganic pollutants present in industrial effluents. The recent modes of preparation, physicochemical properties and adsorption mechanisms of biochar in removing organic and inorganic industrial pollutants are also reviewed comprehensively. Biochar showed high adsorption of industrial dyes up to 80%. It also discusses the recent application and mechanism of biochar-supported photocatalytic materials for the degradation of organic contaminants in wastewater. We reviewed also the possible optimizations (such as the pyrolysis temperature, solution pH) allowing the increase of the adsorption capabilities of biochar leading to organic contaminants removal. Besides, increasing the pyrolysis temperature of the biochar was seen to lead to an increase in its surface area, while it decreases their amount of oxygen-containing functional groups, consequently leading to a decrease in the adsorption of metal (loid) ions present in the medium. Finally, the review suggests that more research should be carried out to optimize the main parameters involved in biochar production and its regeneration methods. Future efforts should be also carried out towards process engineering to improve its adsorption capacity to increase the economic benefits of its implementation.


Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2364
Author(s):  
Martin V. Maier ◽  
Yvonne Wolter ◽  
Daniel Zentler ◽  
Christian Scholz ◽  
Charlotte N. Stirn ◽  
...  

Arsenic (As) contamination of groundwater is commonly remediated by pump and treat. However, this technique is difficult to apply or maintain efficiently because the mobility of arsenic varies depending on the geochemical aquifer conditions. Arsenic interacting with the sediment can cause strong retardation, which is counteracted by ions competing for sedimentary sorption sites like silica, bicarbonate and phosphate. Phosphate competes most effectively with arsenic for sorption sites due to its chemical similarity. To accelerate an ongoing but ineffective pump and treat remediation, we examined the competitive effect of increasing phosphate doses on contaminated aquifer material of different depths and thus under distinct geochemical conditions. In the columns with phosphate addition, significant amounts of arsenic were released rapidly under oxic and anoxic conditions. In all tests, the grade of leaching was higher under anoxic conditions than under oxic conditions. As(III) was the dominant species, in particular during the first release peaks and the anoxic tests. Higher amounts of phosphate did not trigger the arsenic release further and led to a shift of arsenic species. We suggest that the competitive surface complexation is the major process of arsenic release especially when higher amounts of phosphate are used. Commonly arsenic release is described at iron reducing conditions. In contrast, we observed that a change in prevailing redox potential towards manganese reducing conditions in the oxic tests and iron reducing conditions in the anoxic column took place later and thus independently of arsenic release. The reduction of As(V) to As(III) under both redox conditions is presumed to be an effect of microbial detoxification. A loss of sulphate in all columns with phosphate indicates an increased microbial activity, which might play a significant role in the process of arsenic release. Preliminary tests with sediment material from a contaminated site showed that phosphate additions did not change the pH value significantly. Therefore, a release of other metals is not likely. Our results indicate that in-situ application of phosphate amendments to arsenic-contaminated sites could accelerate and enhance arsenic mobility to improve the efficiency of pump and treat remediation without negative side effects. The novelty of this approach is the use of only small amounts of phosphate in order to stimulate microbial activity in addition to surface complexation. Therefore, this method might become an innovative and cost-effective remediation for arsenic contaminated sites.


2019 ◽  
Vol 136 ◽  
pp. 06021
Author(s):  
Qianfeng He ◽  
Shihui Si ◽  
Jun Yang ◽  
Xiaoyu Tu

As a new in-situ remediation of groundwater, compared with the traditional “pump and treat” technology, the permeable reactive barrier (PRB) has the advantages of low cost, no external power, the small disturbance to groundwater, small secondary pollution and long-term operation, this paper introduces the basic concept of PRB, technical principle, structure type, the principle of active materials selection and mechanisms of remediation, design and installation factors, it provides ideas for further research and application of PRB technology in groundwater remediation projects in China.


2008 ◽  
Vol 587-588 ◽  
pp. 921-925 ◽  
Author(s):  
Sofia F. Marques ◽  
Raquel A. Silva ◽  
Jose Brito Correia ◽  
Nobumitsu Shohoji ◽  
Carmen M. Rangel

FeTi intermetallic powders are very promising media for reversible hydrogen storage. However, difficult activation treatments including annealing at elevated temperatures in high pressure H2 gas atmosphere are mandatory. In the present work nanostructured FeTi powders were produced and activated in situ at room temperature using mechanical alloying/milling (MA/MM) of pure metallic constituents, Fe and Ti, added with sodium borohydride. The resultant powders, FeTiHx, already H2 pre-charged, absorbed a significant amount of H2 but require optimization for reversible absorption/desorption. This system has one of the highest volumetric storage capacities and can be produced at low cost. Several parameters of the as-milled powders were controlled. The phase constitution of the reaction products was characterized by X-ray diffraction and scanning electron microscopy and the absorption isotherms of the activated powders were determined.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Xuan Hoa Vu ◽  
Lan Huong Nguyen ◽  
Huu Tap Van ◽  
Dinh Vinh Nguyen ◽  
Thu Huong Nguyen ◽  
...  

In this study, freshwater snail shells (FSSs) containing CaCO3 were used as a low-cost biosorbent for removing Cr(VI) from aqueous solutions. The characteristics of FSS and mechanism of Cr(VI) adsorption onto FSS were investigated. The FSS biosorbent was characterized using nitrogen adsorption/desorption isotherm, X-ray diffraction, scanning electron microscopy with energy dispersive spectroscopy, and Fourier transform infrared spectroscopy. The adsorption mechanism was determined by conducting various batch adsorption experiments along with fitting experimental data with various adsorption models. Batch adsorption experiments were conducted as a function of solution pH, contact time, biosorbent dose, and initial Cr(VI) concentration. Results indicated that pH = 2, a contact time of 120 min, and an initial Cr(VI) concentration of 30 mg/L at 20°C were the best conditions for adsorption of Cr(VI) onto FSS. The Cr(VI) adsorption onto FSS decreased with an increase in temperature from 20 to 40°C. The obtained maximum adsorption capacity was 8.85 mg/g for 2 g/L of FSS dose with 30 mg/L of initial Cr(VI) at 20°C. The adsorption equilibrium data fit well with the Sips and Langmuir isotherm models at 20°C with a high R2 of 0.981 and 0.975, respectively. Also, a good correlation between the experimental data and the pseudo-second-order model was achieved, with the highest R2 of 0.995 at 20°C. The adsorption mechanisms were electrostatic interaction and ion exchange. Simultaneously, this mechanism was also controlled by film diffusion. The Cr(VI) adsorption process was irreversible, spontaneous (−∆G°), exothermic (∆H° is negative), and less random (∆S° is negative). In conclusion, freshwater snail shells have the potential as a renewable adsorbent to remove toxic metals from wastewater.


2005 ◽  
Vol 2 (1) ◽  
pp. 71 ◽  
Author(s):  
Chicgoua Noubactep ◽  
Günther Meinrath ◽  
Peter Dietrich ◽  
Martin Sauter ◽  
B. J. Merkel

Environmental Context. Groundwater remediation is generally a costly, long-term process. In situ remediation using permeable reactive barriers, through which the groundwaters pass, is a potential solution. For redox-sensitive contaminants in groundwater, a metallic iron barrier (zerovalent iron, ZVI) can immobilize or degrade these dissolved pollutants. Scrap iron materials are a low-cost ZVI material but, because of the wide variation of scrap metal compositions, testing methods for characterizing the corrosion behaviour need to be developed. Abstract. Zerovalent iron (ZVI) has been proposed as reactive material in permeable in situ walls for contaminated groundwater. An economically feasible ZVI-based reactive wall requires cheap but efficient iron materials. From an uranium treatability study and results of iron dissolution in 0.002 M EDTA by five selected ZVI materials, it is shown that current research and field implementation is not based on a rational selection of application-specific iron metal sources. An experimental procedure is proposed which could enable a better material characterization. This procedure consists of mixing ZVI materials and reactive additives, including contaminant releasing materials (CRMs), in long-term batch experiments and characterizing the contaminant concentration over the time.


Author(s):  
Jian-Shing Luo ◽  
Hsiu Ting Lee

Abstract Several methods are used to invert samples 180 deg in a dual beam focused ion beam (FIB) system for backside milling by a specific in-situ lift out system or stages. However, most of those methods occupied too much time on FIB systems or requires a specific in-situ lift out system. This paper provides a novel transmission electron microscopy (TEM) sample preparation method to eliminate the curtain effect completely by a combination of backside milling and sample dicing with low cost and less FIB time. The procedures of the TEM pre-thinned sample preparation method using a combination of sample dicing and backside milling are described step by step. From the analysis results, the method has applied successfully to eliminate the curtain effect of dual beam FIB TEM samples for both random and site specific addresses.


2002 ◽  
Vol 2 (5-6) ◽  
pp. 217-224 ◽  
Author(s):  
Z. Reddad ◽  
C. Gérente ◽  
Y. Andrès ◽  
P. Le Cloirec

In the present work, sugar beet pulp, a common waste from the sugar refining industry, was studied in the removal of metal ions from aqueous solutions. The ability of this cheap biopolymer to sorb several metals namely Pb2+, Cu2+, Zn2+, Cd2+ and Ni2+ in aqueous solutions was investigated. The metal fixation capacities of the sorbent were determined according to operating conditions and the fixation mechanisms were identified. The biopolymer has shown high elimination rates and interesting metal fixation capacities. A pseudo-second-order kinetic model was tested to investigate the adsorption mechanisms. The kinetic parameters of the model were calculated and discussed. For 8 × 10-4 M initial metal concentration, the initial sorption rates (v0) ranged from 0.063 mmol.g-1.min-1 for Pb2+ to 0.275 mmol.g-1.min-1 for Ni2+ ions, with the order: Ni2+ > Cd2+ > Zn2+ > Cu2+ > Pb2+. The equilibrium data fitted well with the Langmuir model and showed the following affinity order of the material: Pb2+ > Cu2+ > Zn2+ > Cd2+ > Ni2+. Then, the kinetic and equilibrium parameters calculated qm and v0 were tentatively correlated to the properties of the metals. Finally, equilibrium experiments in multimetallic systems were performed to study the competition of the fixation of Pb2+, Zn2+ and Ni2+ cations. In all cases, the metal fixation onto the biopolymer was found to be favourable in multicomponent systems. Based on these results, it is demonstrated that this biosorbent represents a low-cost solution for the treatment of metal-polluted wastewaters.


2019 ◽  
Author(s):  
Nikki Theofanopoulou ◽  
Katherine Isbister ◽  
Julian Edbrooke-Childs ◽  
Petr Slovák

BACKGROUND A common challenge within psychiatry and prevention science more broadly is the lack of effective, engaging, and scale-able mechanisms to deliver psycho-social interventions for children, especially beyond in-person therapeutic or school-based contexts. Although digital technology has the potential to address these issues, existing research on technology-enabled interventions for families remains limited. OBJECTIVE The aim of this pilot study was to examine the feasibility of in-situ deployments of a low-cost, bespoke prototype, which has been designed to support children’s in-the-moment emotion regulation efforts. This prototype instantiates a novel intervention model that aims to address the existing limitations by delivering the intervention through an interactive object (a ‘smart toy’) sent home with the child, without any prior training necessary for either the child or their carer. This pilot study examined (i) engagement and acceptability of the device in the homes during 1 week deployments; and (ii) qualitative indicators of emotion regulation effects, as reported by parents and children. METHODS In this qualitative study, ten families (altogether 11 children aged 6-10 years) were recruited from three under-privileged communities in the UK. The RA visited participants in their homes to give children the ‘smart toy’ and conduct a semi-structured interview with at least one parent from each family. Children were given the prototype, a discovery book, and a simple digital camera to keep at home for 7-8 days, after which we interviewed each child and their parent about their experience. Thematic analysis guided the identification and organisation of common themes and patterns across the dataset. In addition, the prototypes automatically logged every interaction with the toy throughout the week-long deployments. RESULTS Across all 10 families, parents and children reported that the ‘smart toy’ was incorporated into children’s emotion regulation practices and engaged with naturally in moments children wanted to relax or calm down. Data suggests that children interacted with the toy throughout the duration of the deployment, found the experience enjoyable, and all requested to keep the toy longer. Child emotional connection to the toy—caring for its ‘well-being’—appears to have driven this strong engagement. Parents reported satisfaction with and acceptability of the toy. CONCLUSIONS This is the first known study investigation of the use of object-enabled intervention delivery to support emotion regulation in-situ. The strong engagement and qualitative indications of effects are promising – children were able to use the prototype without any training and incorporated it into their emotion regulation practices during daily challenges. Future work is needed to extend this indicative data with efficacy studies examining the psychological efficacy of the proposed intervention. More broadly, our findings suggest the potential of a technology-enabled shift in how prevention interventions are designed and delivered: empowering children and parents through ‘child-led, situated interventions’, where participants learn through actionable support directly within family life, as opposed to didactic in-person workshops and a subsequent skills application.


Sign in / Sign up

Export Citation Format

Share Document