scholarly journals Overview of the IBER-STILLING project: Assessment and attribution of wind speed and wind gust variability

Author(s):  
Cesar Azorin-Molina ◽  
Manola Brunet ◽  
Enric Aguilar ◽  
Jose A. Guijarro ◽  
Amir A. Safaei Pirooz ◽  
...  

<p>In a context of global climate change, the scientific community has evidenced a significant decrease in wind speed, a phenomenon known as «stilling». This climate trend has mainly been observed over mid-latitude continental surfaces since the 1980s. On the contrary, other studies have detected an increase in wind speed over ocean surfaces; and there is little conclusive scientific evidence on trends in wind speed across the troposphere. Furthermore, a reversal in global terrestrial stilling has recently been documented in few regional and global studies since the 2010s. The causes associated with the climate variability of wind speed have not yet been resolved and there are many uncertainties behind the «stilling» and «recovery» phenomenon because neither the quantity nor the quality of wind speed observations is adequate. This contribution shows an overview of the IBER-STILLING project (RTI2018-095749-A-I00) funded by the Spanish Ministry of Science, Innovation and Universities.  This project aims to move forward on the assessment of wind speed and wind gusts variability and underlying causes globally, with emphasis on the Spanish territory and surrounding ocean (Atlantic) and sea (Mediterranean) surfaces. The IBER-STILLING project will collect and generate climate information of wind speed from different data sources; climate data will be subject to a comprehensive protocol for quality control and homogenization. The statistical analysis of these climate databases will allow characterizing trends and climatic cycles of wind speed, allowing a pioneering global analysis of wind speed over continental and ocean surfaces, and across the boundary layer and the entire troposphere. The project will also conduct wind-tunnel experiments to quantify biases introduced by anemometers devices. </p>

2021 ◽  
Author(s):  
Erik Engström ◽  
Cesar Azorin-Molina ◽  
Lennart Wern ◽  
Sverker Hellström ◽  
Christophe Sturm ◽  
...  

<p>Here we present the progress of the first work package (WP1) of the project “Assessing centennial wind speed variability from a historical weather data rescue project in Sweden” (WINDGUST), funded by FORMAS – A Swedish Research Council for Sustainable Development (ref. 2019-00509); previously introduced in EGU2019-17792-1 and EGU2020-3491. In a global climate change, one of the major uncertainties on the causes driving the climate variability of winds (i.e., the “stilling” phenomenon and the recent “recovery” since the 2010s) is mainly due to short availability (i.e., since the 1960s) and low quality of observed wind records as stated by the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC).</p><p>The WINDGUST is a joint initiative between the Swedish Meteorological and Hydrological Institute (SMHI) and the University of Gothenburg aimed at filling the key gap of short availability and low quality of wind datasets, and improve the limited knowledge on the causes driving wind speed variability in a changing climate across Sweden.</p><p>During 2020, we worked in WP1 to rescue historical wind speed series available in the old weather archives at SMHI for the 1920s-1930s. In the process we followed the “Guidelines on Best Practices for Climate Data Rescue” of the World Meteorological Organization. Our protocol consisted on: (i) designing a template for digitization; (ii) digitizing papers by an imaging process based on scanning and photographs; and (iii) typing numbers of wind speed data into the template. We will report the advances and current status, challenges and experiences learned during the development of WP1. Until new year 2020/2021 eight out of thirteen selected stations spanning over the years 1925 to 1948 have been scanned and digitized by three staff members of SMHI during 1,660 manhours.</p>


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Dan-Dan Yu ◽  
Shan Li ◽  
Zhong-Yang Guo

The evaluation of climate comfort for tourism can provide information for tourists selecting destinations and tourism operators. Understanding how climate conditions for tourism evolve is increasingly important for strategic tourism planning, particularly in rapidly developing tourism markets like China in a changing climate. Multidimensional climate indices are needed to evaluate climate for tourism, and previous studies in China have used the much criticized “climate index” with low resolution climate data. This study uses the Holiday Climate Index (HCI) and daily data from 775 weather stations to examine interregional differences in the tourist climate comfortable period (TCCP) across China and summarizes the spatiotemporal evolution of TCCP from 1981 to 2010 in a changing climate. Overall, most areas in China have an “excellent” climate for tourism, such that tourists may visit anytime with many choices available. The TCCP in most regions shows an increasing trend, and China benefits more from positive effects of climate change in climatic conditions for tourism, especially in spring and autumn. These results can provide some scientific evidence for understanding human settlement environmental constructions and further contribute in improving local or regional resilience responding to global climate change.


2019 ◽  
Author(s):  
Andrea K. Steiner ◽  
Florian Ladstädter ◽  
Chi O. Ao ◽  
Hans Gleisner ◽  
Shu-Peng Ho ◽  
...  

Abstract. Atmospheric climate monitoring requires observations of high-quality conforming to the criteria of the Global Climate Observing System (GCOS). Radio occultation (RO) data based on Global Positioning System (GPS) signals are available since 2001 from several satellite missions with global coverage, high accuracy, and high vertical resolution in the troposphere and lower stratosphere. We assess the consistency and long-term stability of multi-satellite RO observations for use as climate data records. As a measure of long-term stability, we quantify the structural uncertainty of RO data products arising from different processing schemes. We analyze atmospheric variables from bending angle to temperature for four RO missions, CHAMP, Formosat-3/COSMIC, GRACE, and Metop, provided by five data centers. The comparisons are based on profile-to-profile differences, aggregated to monthly means. Structural uncertainty in trends is found lowest from 8 km to 25 km altitude globally for all inspected RO variables and missions. For temperature, it is < 0.05 K per decade in the global mean and < 0.1 K per decade at all latitudes. Above 25 km, the uncertainty increases for CHAMP while data from the other missions are based on advanced receivers and are usable to higher altitudes for climate trend studies: dry temperature to 35 km, refractivity to 40 km, and bending angle to 50 km. Larger differences in RO data at high altitudes and latitudes are mainly due to different implementation choices in the retrievals. The intercomparison helped to further enhance the maturity of the RO record and confirms the climate quality of multi-satellite RO observations towards establishing a GCOS climate data record.


2020 ◽  
Vol 13 (5) ◽  
pp. 2547-2575 ◽  
Author(s):  
Andrea K. Steiner ◽  
Florian Ladstädter ◽  
Chi O. Ao ◽  
Hans Gleisner ◽  
Shu-Peng Ho ◽  
...  

Abstract. Atmospheric climate monitoring requires observations of high quality that conform to the criteria of the Global Climate Observing System (GCOS). Radio occultation (RO) data based on Global Positioning System (GPS) signals are available since 2001 from several satellite missions with global coverage, high accuracy, and high vertical resolution in the troposphere and lower stratosphere. We assess the consistency and long-term stability of multi-satellite RO observations for use as climate data records. As a measure of long-term stability, we quantify the structural uncertainty of RO data products arising from different processing schemes. We analyze atmospheric variables from bending angle to temperature for four RO missions, CHAMP, Formosat-3/COSMIC, GRACE, and Metop, provided by five data centers. The comparisons are based on profile-to-profile differences aggregated to monthly medians. Structural uncertainty in trends is found to be lowest from 8 to 25 km of altitude globally for all inspected RO variables and missions. For temperature, it is < 0.05 K per decade in the global mean and < 0.1 K per decade at all latitudes. Above 25 km, the uncertainty increases for CHAMP, while data from the other missions – based on advanced receivers – are usable to higher altitudes for climate trend studies: dry temperature to 35 km, refractivity to 40 km, and bending angle to 50 km. Larger differences in RO data at high altitudes and latitudes are mainly due to different implementation choices in the retrievals. The intercomparison helped to further enhance the maturity of the RO record and confirms the climate quality of multi-satellite RO observations towards establishing a GCOS climate data record.


2018 ◽  
Vol 937 (7) ◽  
pp. 23-34 ◽  
Author(s):  
I.N. Vladimirov

The article considers a new approach to landscape mapping based on the synthesis of remote sensing data of high and medium spatial resolution, a digital elevation model, maps of various thematic contents, a set of global climate data, and materials of field research. The map of the Baikalian’s Siberia geosystems is based on the principles of the multistage regional-typological and structural-dynamic classification of geosystems proposed by Academician V.B. Sochava. The structure of the geosystems of the Baikalian Siberia is characterized by great complexity, both in the set of natural complexes and in the degree of their contrast. The regional classification range covers the geosystems inherent in different subcontinents of Asia and reflects their interpenetration, being a unique landscape-situational example of Siberian nature within North Asia. The map of the geosystems of the Baikalian Siberia reflects the main structural and dynamic diversity of geosystems in the region in the systems of their geographic and genetic spatial structures. These landscape cartographic studies fit into a single system of geographic forecasting and create a new fundamental scientific basis for developing recommendations for optimizing nature management in the Baikal region within the framework of implementing state environmental policy.


2021 ◽  
Vol 9 (3) ◽  
pp. 293
Author(s):  
Mauro Corriere ◽  
Lucía Soliño ◽  
Pedro Reis Costa

Natural high proliferations of toxin-producing microorganisms in marine and freshwater environments result in dreadful consequences at the socioeconomically and environmental level due to water and seafood contamination. Monitoring programs and scientific evidence point to harmful algal blooms (HABs) increasing in frequency and intensity as a result of global climate alterations. Among marine toxins, the okadaic acid (OA) and the related dinophysistoxins (DTX) are the most frequently reported in EU waters, mainly in shellfish species. These toxins are responsible for human syndrome diarrhetic shellfish poisoning (DSP). Fish, like other marine species, are also exposed to HABs and their toxins. However, reduced attention has been given to exposure, accumulation, and effects on fish of DSP toxins, such as OA. The present review intends to summarize the current knowledge of the impact of DSP toxins and to identify the main issues needing further research. From data reviewed in this work, it is clear that exposure of fish to DSP toxins causes a range of negative effects, from behavioral and morphological alterations to death. However, there is still much to be investigated about the ecological and food safety risks related to contamination of fish with DSP toxins.


Atmosphere ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 63
Author(s):  
Sidou Zhang ◽  
Shiyin Liu ◽  
Tengfei Zhang

By using products of the cloud model, National Centers for Environmental Prediction (NCEP) Final Operational Global Analysis (FNL) reanalysis data, and Doppler weather radar data, the mesoscale characteristics, microphysical structure, and mechanism of two hail cloud systems which occurred successively within 24 h in southeastern Yunnan have been analyzed. The results show that under the influence of two southwest jets in front of the south branch trough (SBT) and the periphery of the western Pacific subtropical high (WPSH), the northeast-southwest banded echoes affect the southeastern Yunnan of China twice. Meanwhile, the local mesoscale radial wind convergence and uneven wind speed lead to the intense development of convective echoes and the occurrence of hail. The simulated convective cloud bands are similar to the observation. The high-level mesoscale convergence line leads to the development of convective cloud bands. The low-level wind direction or wind speed convergence and the high-level wind speed divergence form a deep tilted updraft, with the maximum velocity of 15 m·s−1 at the −40~−10 °C layer, resulting in the intense development of local convective clouds. The hail embryos form through the conversion or collision growth of cloud water and snowflakes and have little to do with rain and ice crystals. Abundant cloud water, especially the accumulation region of high supercooled water (cloud water) near the 0 °C layer, is the key to the formation of hail embryos, in which qc is up to 1.92 g·kg−1 at the −4~−2 °C layer. The hail embryos mainly grow by collision-coalescence (collision-freezing) with cloud water (supercooled cloud drops) and snow crystal riming.


2014 ◽  
Vol 14 (9) ◽  
pp. 2487-2501 ◽  
Author(s):  
J. F. Roberts ◽  
A. J. Champion ◽  
L. C. Dawkins ◽  
K. I. Hodges ◽  
L. C. Shaffrey ◽  
...  

Abstract. The XWS (eXtreme WindStorms) catalogue consists of storm tracks and model-generated maximum 3 s wind-gust footprints for 50 of the most extreme winter windstorms to hit Europe in the period 1979–2012. The catalogue is intended to be a valuable resource for both academia and industries such as (re)insurance, for example allowing users to characterise extreme European storms, and validate climate and catastrophe models. Several storm severity indices were investigated to find which could best represent a list of known high-loss (severe) storms. The best-performing index was Sft, which is a combination of storm area calculated from the storm footprint and maximum 925 hPa wind speed from the storm track. All the listed severe storms are included in the catalogue, and the remaining ones were selected using Sft. A comparison of the model footprint to station observations revealed that storms were generally well represented, although for some storms the highest gusts were underestimated. Possible reasons for this underestimation include the model failing to simulate strong enough pressure gradients and not representing convective gusts. A new recalibration method was developed to estimate the true distribution of gusts at each grid point and correct for this underestimation. The recalibration model allows for storm-to-storm variation which is essential given that different storms have different degrees of model bias. The catalogue is available at http://www.europeanwindstorms.org .


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7416
Author(s):  
Mohd Anul Haq ◽  
Prashant Baral ◽  
Shivaprakash Yaragal ◽  
Biswajeet Pradhan

Studies relating to trends of vegetation, snowfall and temperature in the north-western Himalayan region of India are generally focused on specific areas. Therefore, a proper understanding of regional changes in climate parameters over large time periods is generally absent, which increases the complexity of making appropriate conclusions related to climate change-induced effects in the Himalayan region. This study provides a broad overview of changes in patterns of vegetation, snow covers and temperature in Uttarakhand state of India through bulk processing of remotely sensed Moderate Resolution Imaging Spectroradiometer (MODIS) data, meteorological records and simulated global climate data. Additionally, regression using machine learning algorithms such as Support Vectors and Long Short-term Memory (LSTM) network is carried out to check the possibility of predicting these environmental variables. Results from 17 years of data show an increasing trend of snow-covered areas during pre-monsoon and decreasing vegetation covers during monsoon since 2001. Solar radiation and cloud cover largely control the lapse rate variations. Mean MODIS-derived land surface temperature (LST) observations are in close agreement with global climate data. Future studies focused on climate trends and environmental parameters in Uttarakhand could fairly rely upon the remotely sensed measurements and simulated climate data for the region.


2021 ◽  
Author(s):  
Elin Lundstad ◽  
Yuri Brugnera ◽  
Stefan Brönnimann

&lt;p&gt;This work describes the compilation of global instrumental climate data with a focus on the 18th and early 19th centuries. This database provides early instrumental data recovered for thousands of locations around the world. Instrumental meteorological measurements from periods prior to the start of national weather services are designated &amp;#8220;early instrumental data&amp;#8221;. Much of the data is taken from repositories we know (GHCN, ISTI, CRUTEM, Berkeley Earth, HISTALP). In addition, many of these stations have not been digitized before. Therefore,&amp;#160; we provide a new global collection of monthly averages of multivariable meteorological parameters before 1890 based on land-based meteorological station data. The product will be form as the most comprehensive global monthly climate data set, encompassing temperature, pressure, and precipitation as ever done. These data will be quality controlled and analyzed with respect to climate variability and they be assimilated into global climate model simulations to provide monthly global reconstructions. The collection has resulted in a completely new database that is uniform, where no interpolations are included. Therefore, we are left with climate reconstruction that becomes very authentic. This compilation will describe the procedure and various challenges we have encountered by creating a unified database that can later be used for e.g. models. It will also describe the strategy for quality control that has been adopted is a sequence of tests.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document