scholarly journals The causal link of large shallow slip, long duration and moderate shaking of the Nicaragua 1992 tsunami earthquake

Author(s):  
Valenti Sallares ◽  
Manel Prada ◽  
Alcinoe Calahorrano ◽  
Adrià Meléndez ◽  
Cesar R. Ranero ◽  
...  

<p>Earthquakes rupturing up to close to subduction trenches have produced some of the largest tsunamis in history. Models indicate that the generation of these tsunamis require extraordinarily large near-trench sea-bottom displacement, but the underlying causes are disputed. They have been attributed to a wealth of factors prompting large shallow slip at the low-angle megathrust fault, the activation of steeper faults requiring smaller slip, or the triggering of ancillary energy sources. Although the postulated mechanisms are manifold, all of them coincide on the fact that the proposed causes and constraining factors are not universal but site-specific. As alternative to this local view, it has recently been proposed that the large near-trench slip could result from systematic upper-plate rock rigidity variations observed in worldwide subduction zones. Here we use a set of available controlled-source seismic data in the Middle America margin to obtain a model of upper-plate elastic rock properties across the rupture zone of the Ms7.0-Mw7.7 1992 Nicaragua tsunami earthquake. In combination with seismological data, our model shows that not only the required large shallow slip to generate the tsunami despite the moderate magnitude, but also the observed slow rupture propagation, long duration, high-frequency depletion, and magnitude discrepancy of this event, are all intrinsic physical attributes of near-trench rupture. The existence of a causal link between shallow slip and seismic record characteristics opens up new possibilities for tsunami early warning.</p>

2021 ◽  
Vol 7 (32) ◽  
pp. eabg8659
Author(s):  
Valentí Sallarès ◽  
Manel Prada ◽  
Sebastián Riquelme ◽  
Adrià Meléndez ◽  
Alcinoe Calahorrano ◽  
...  

Large earthquake ruptures propagating up to areas close to subduction trenches are infrequent, but when they occur, they heavily displace the ocean seafloor originating destructive tsunamis. The current paradigm is that the large seafloor deformation is caused by local factors reducing friction and increasing megathrust fault slip, or prompting the activation of ancillary faults or energy sources. As alternative to site-specific models, it has been proposed that large shallow slip could result from depth-dependent rock rigidity variations. To confront both hypotheses, here, we map elastic rock properties across the rupture zone of the MS7.0-MW7.7 1992 Nicaragua tsunami earthquake to estimate a property-compatible finite fault solution. The obtained self-consistent model accounts for trenchward increasing slip, constrains stress drop, and explains key tsunami earthquake characteristics such as long duration, high-frequency depletion, and magnitude discrepancy. The confirmation that these characteristics are all intrinsic attributes of shallow rupture opens new possibilities to improve tsunami hazard assessment.


Author(s):  
Raquel P. Felix ◽  
Judith A. Hubbard ◽  
James D. P. Moore ◽  
Adam D. Switzer

ABSTRACT The frontal sections of subduction zones are the source of a poorly understood hazard: “tsunami earthquakes,” which generate larger-than-expected tsunamis given their seismic shaking. Slip on frontal thrusts is considered to be the cause of increased wave heights in these earthquakes, but the impact of this mechanism has thus far not been quantified. Here, we explore how frontal thrust slip can contribute to tsunami wave generation by modeling the resulting seafloor deformation using fault-bend folding theory. We then quantify wave heights in 2D and expected tsunami energies in 3D for both thrust splays (using fault-bend folding) and down-dip décollement ruptures (modeled as elastic). We present an analytical solution for the damping effect of the water column and show that, because the narrow band of seafloor uplift produced by frontal thrust slip is damped, initial tsunami heights and resulting energies are relatively low. Although the geometry of the thrust can modify seafloor deformation, water damping reduces these differences; tsunami energy is generally insensitive to thrust ramp parameters, such as fault dip, geological evolution, sedimentation, and erosion. Tsunami energy depends primarily on three features: décollement depth below the seafloor, water depth, and coseismic slip. Because frontal ruptures of subduction zones include slip on both the frontal thrust and the down-dip décollement, we compare their tsunami energies. We find that thrust ramps generate significantly lower energies than the paired slip on the décollement. Using a case study of the 25 October 2010 Mw 7.8 Mentawai tsunami earthquake, we show that although slip on the décollement and frontal thrust together can generate the required tsunami energy, <10% was contributed by the frontal thrust. Overall, our results demonstrate that the wider, lower amplitude uplift produced by décollement slip must play a dominant role in the tsunami generation process for tsunami earthquakes.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Sebastian Cionoiu ◽  
Evangelos Moulas ◽  
Lucie Tajčmanová

AbstractPhase transformations greatly affect physical properties of rocks and impose a first-order control on geodynamic processes. Under high deformation rates, rheological heterogeneities cause large spatial variations of stress in materials. Until now, the impact of higher deformation rates, rock heterogeneity and stress build up on phase transformations and material properties is not well understood. Here we show, that phase transitions are controlled by the stress build-up during fast deformation. In a deformation experiment (600 °C, 1.47 GPa), rock heterogeneity was simulated by a strong elliptical alumina inclusion in a weak calcite matrix. Under deformation rates comparable to slow earthquakes, calcite transformed locally to aragonite matching the distribution of maximum principal stresses and pressure (mean stress) from mechanical models. This first systematic investigation documents that phase transformations occur in a dynamic system during deformation. The ability of rocks to react during fast deformation rates may have serious consequences on rock rheology and thus provide unique information on the processes leading to giant ruptures in subduction zones.


Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. MR341-MR349
Author(s):  
Tongcheng Han ◽  
Zhoutuo Wei ◽  
Li-Yun Fu

A geometric factor properly describing the microstructure of a rock is compulsory for effective medium models to accurately predict the elastic and electrical rock properties, which, in turn, are of great importance for interpreting data acquired by seismic and electromagnetic surveys, two of the most important geophysical methods for understanding the earth. Despite the applications of cementation exponent for the successful modeling of electrical rock properties, however, there has been no demonstration of cementation exponent as the geometric factor for the elastic rock properties. We have developed a workflow to model the elastic properties of clean and normal granular rocks through the combination of effective medium modeling approaches using cementation exponent as the geometric factor. Based on the dedicated modeling approaches, we find that cementation exponent can be adequately used as a geometric factor for the elastic properties of granular rocks. Further results highlight the effects of cementation exponent on the elastic and joint elastic-electrical properties of granular rocks. The results illustrate the promise of cementation exponent as a geometric link for the joint elastic-electrical modeling to better characterize the earth through integrated seismic and electromagnetic surveys.


2020 ◽  
Author(s):  
Sebastian Cionoiu ◽  
Lucie Tajčmanová ◽  
Lyudmila Khakimova

<p>Phase transitions affect the physical properties of rocks (e.g. rheology) and control geodynamic processes at different spatial and time scales. However, the influence of deformation on phase transitions and their coupling is not well understood. <br>Previous experiments, with both assembly-induced and additionally placed mechanical heterogeneities, have shown patterns in the phase transition distribution. Numerical modelling (2D, viscous finite difference models) have been used to correlate the experimental observations with the mechanic stress state. The locally increased mean stress in the models shows the best correlation with the formation of high-pressure polymorphs in experiments (Cionoiu et al. 2019).<br>Besides the distribution of polymorphs, grain-size and deformation patterns also vary across the samples due to stress, strain and pressure variations. To better understand the mechanisms contributing to these variations, we used advanced numerical models (3D, viscoelastic) to calculate the local distribution of first order parameters as pressure, stress and strain. The modelled stress and strain patterns are compared to the experimentally produced phase transformation distribution and previous (2D) modelling results. The 2D and 3D models differ partially regarding the quantification of local stresses – an effect that mainly depends on sample geometry (coaxial vs. general-shear). However, the qualitative fit between experiments, 2D and 3D models persists (i.e. the localisation of increased stresses or strain).<br>This contribution shows how numerical models, that closely represent the sample, can further improve the understanding of processes occurring in deformation experiments. Our new results emphasize that mechanically-induced stress-variations influence the grain-size and mineralogy of rocks which feeds back on their rheology.</p><p>References: <br>Cionoiu, S., Moulas, E. & Tajčmanová, L. Impact of interseismic deformation on phase transformations and rock properties in subduction zones. Sci Rep 9, 19561 (2019)</p>


2020 ◽  
Author(s):  
Rebecca Bell

<p>The discovery of slow slip events (SSEs) at subduction margins in the last two decades has changed our understanding of how stress is released at subduction zones. Fault slip is now viewed as a continuum of different slip modes between regular earthquakes and aseismic creep, and an appreciation of seismic hazard can only be realised by understanding the full spectrum of slip. SSEs may have the potential to trigger destructive earthquakes and tsunami on faults nearby, but whether this is possible and why SSEs occur at all are two of the most important questions in earthquake seismology today. Laboratory and numerical models suggest that slow slip can be spontaneously generated under conditions of very low effective stresses, facilitated by high pore fluid pressure, but it has also been suggested that variations in frictional behaviour, potentially caused by very heterogeneous fault zone lithology, may be required to promote slow slip.</p><p>Testing these hypotheses is difficult as it requires resolving rock properties at a high resolution many km below the seabed sometimes in km’s of water, where drilling is technically challenging and expensive. Traditional geophysical methods like travel-time tomography cannot provide fine-scale enough velocity models to probe the rock properties in fault zones specifically. In the last decade, however, computational power has improved to the point where 3D full-waveform inversion (FWI) methods make it possible to use the full wavefield rather than just travel times to produce seismic velocity models with a resolution an order of magnitude better than conventional models. Although the hydrocarbon industry have demonstrated many successful examples of 3D FWI the method requires extremely high density arrays of instruments, very different to the 2D transect data collection style which is still commonly employed at subduction zones.</p><p> The north Hikurangi subduction zone, New Zealand is special, as it hosts the world’s most well characterised shallow SSEs (<2 km to 15 km below the seabed).  This makes it an ideal location to collect 3D data optimally for FWI to resolve rock properties in the slow slip zone. In 2017-2018 an unprecedentedly large 3D experiment including 3D multi-channel seismic reflection, 99 ocean bottom seismometers and 194 onshore seismometers was conducted along the north Hikurangi margin in an 100 km x 15 km area, with an average 2 km instrument spacing. In addition, IODP Expeditions 372 and 375 collected logging-while drilling and core data, and deployed two bore-hole observatories to target slow slip in the same area. In this presentation I will introduce you to this world class 3D dataset and preliminary results, which will enable high resolution 3D models of physical properties to be made to bring slow slip processes into focus.  </p>


2020 ◽  
Author(s):  
Nicolas Brantut ◽  
Emmanuel David

<p>High Vp/Vs ratio is a commonly used diagnostic for elevated fluid pressure when interpreting seismological data. The physical basis for this interpretation comes from rock physical data and models of isotropic, cracked rocks. Here, we establish precise conditions under which this interpretation is correct, by using an effective medium approach for fluid-saturated rocks. While the usual result of an increasing Vp/Vs with increasing fluid-saturated porosity holds for crack-like pores, we find that Vp/Vs ratio is not always monotonically increasing with increasing fluid content if the porosity shape deviates from thin cracks, and if the initial Vp/Vs of the rock (without porosity) is already quite high. This is specifically the case of dehydrating rocks, where initial Vp/Vs may already be high (>1.9 for lizardite, for instance), and where the porosity created by the dehydration reaction may be in the form of elongated needles. The model predictions are supported by existing experimental data obtained during dehydration experiments in gypsum and lizardite, which both show a significant decrease in Vp/Vs as dehydration proceeds. Although no experimental data is yet availbale on antigorite, we make a prediction that antigorite dehydration may not lead to any strong increase in Vp/Vs ratio under typical subduction zone conditions. We present our theoretical results in the form of simple closed-form solution (valid asymptotically for a range of limiting cases), which should help guide the interpretation of Vp/Vs ratio from seismological data.</p>


Sign in / Sign up

Export Citation Format

Share Document