Vision of the mine of the future

Author(s):  
Gorazd Žibret

<p>Average mined ore grades are constantly decreasing and easily accessible high-grade mineral deposits have already been mined out. Together with the ever-increasing demand for raw materials, a sustainable supply is becoming very challenging for the mining industry. Ores are being exploited in very large operations and in more and more extreme environments. The presence of high temperatures, poisonous gasses or other harmful substances, water, geotechnical instabilities, etc., limits the possibilities for humans to work in such environments, and increases the costs of mining. New paradigm of ore prospection and extraction is needed, and the use of robotics and automation provides a potential solution.</p><p>The mid-term vision of mines of the future is that humans would not need to be present at the extraction sites anymore. Mining machinery will become remotely controlled or semi-automated. This would significantly reduce the costs of mining operations and eliminate the risks associated with humans working in life-threating environments. The main challenges are related to sensing of the surroundings and the presentation of such data in a virtual reality model, the machine-human-machine and machine-machine communication, positioning, energy supply and similar. This technology can transform the mining industry in a similar way as the development of construction machines transformed the construction sector in the last century.</p><p>In the long-term vision the mines will be completely automated. Mining machines will be able to sense its environment, allowing them to make decisions autonomously. They will also be able to self-assemble, repair, and perhaps even produce their own copies underground. Robots of the mines of the future will be specialised in a similar way workers are specialised today. Ore processing will be accompanied by an autonomous ore processing system at the site of extraction, which will enable the delivery of concentrate or even ingots to the surface and leave the waste material underground. With such systems highly selective low-environmental impact mining of many currently uneconomical ore bodies could become feasible and would allow mining in ultra-deep environments which are today far beyond our reach. With such mining system, mining of extra-terrestrial bodies could also become a reality, and could even put an end to mining on Earth altogether. Many challenges need to be addressed, including energy supply, locomotion, communications, environmental awareness, big data handling and processing, automated decision-making systems, new rock-cutting technologies, ore transport systems, machine and software maintenance and adaptation, etc.</p><p>Humanity is already taking first steps towards this vision. Several international projects have been funded on the topic of sensing, using remotely controlled machines or autonomous robots to perform dangerous exploration or mining tasks: iVAMOS!, UNEXMIN, ROBOMINERS, AutoFlyMap, ROBUST, RODEO,  BADGER, Real-Time Mining, MINERAL EYE and others (funded by the Horizon2020), BlueHarvesting, FIREM-II, HoloMine, UNDROMEDA and others (funded or co-funded by the EIT RawMaterials), or several industrially-funded projects such as Longwall automation mining, A3R, MSRBOTS, ARIDuA, and many others. Many companies which develop robots or other automatic equipment for mines are also emerging, including Unexmin Georobotics, EXPLORA, Equipois, Sandvik, Superdroid Robots, National Robotics Engineering Center, BROKK and others.</p>

2020 ◽  
Vol 4 (4) ◽  
pp. 292-301
Author(s):  
A. F. Simion ◽  
C. Drebenstedt ◽  
M. Lazar

Mining and sustainable development may be compatible with the priority of measures to reduce impacts on the major ecosystems with severe consequences for the future generations. Infiltration of contaminated water into soils/rocks due to activity of different sectors of mining industry causes increasing concentration of minor and major deleterious elements in natural environment, forcing an economic operator to implement the best available techniques to solve severe environmental problems. The research is aimed at determining heavy metal contents in tailings storage facilities of coal mining operations in the eastern part of JiuValley, revealing mechanism of interaction of the TSF infiltrate with EastJiuRiver, as well as assessing the impact of the TSF on quality of the natural environment. One more aim of the research was to determine the ways by which the TSF components produce negative impact on the soils and surface waters. The obtained results can be fundamental basis for the future researches in the field of closing and maintaining the mining activities in JiuValleyand the land reclamation.


2021 ◽  
Vol 4 (2) ◽  
pp. 31
Author(s):  
Haoxuan Yu ◽  
Shuai Li

With the continuous development of the mining industry, the world’s major mines have gradually entered the intelligent stage. In intelligent underground mines, the operation roads of the underground transportation equipment are very complicated, and the monitoring and control of the underground traffic have become the problems to be solved in the intelligent underground mines. Therefore, on the basis of solving the practical problems of underground mines, the concept paper discusses the possibility of the communication-based train control (CBTC) system being applied to underground mines through the summary and induction of the related literature. As mining engineers, we have proposed the function design for the CBTC system to solve the problems in underground mine rail transportation, but we still need to continue to work hard for the future development of the underground mines. The concept paper serves as a guide to the Tossing out a brick to get a jade gem, and it has implications for the development and the future of underground mine transportation.


2021 ◽  
Vol 13 (12) ◽  
pp. 6971
Author(s):  
Mikhail Zarubin ◽  
Larissa Statsenko ◽  
Pavel Spiridonov ◽  
Venera Zarubina ◽  
Noune Melkoumian ◽  
...  

This research article presents a software module for the environmental impact assessment (EIA) of open pit mines. The EIA software module has been developed based on the comprehensive examination of both country-specific (namely, Kazakhstan) and current international regulatory frameworks, legislation and EIA methodologies. EIA frameworks and methods have been critically evaluated, and mathematical models have been developed and implemented in the GIS software module ‘3D Quarry’. The proposed methodology and software module allows for optimised EIA calculations of open pit mines, aiming to minimise the negative impacts on the environment. The study presents an original methodology laid out as a basis for a software module for environmental impact assessment on atmosphere, water basins, soil and subsoil, tailored to the context of mining operations in Kazakhstan. The proposed software module offers an alternative to commercial off-the-shelf software packages currently used in the mining industry and is suitable for small mining operators in post-Soviet countries. It is anticipated that applications of the proposed software module will enable the transition to sustainable development in the Kazakh mining industry.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 972
Author(s):  
Muhammad Mohsin ◽  
Qiang Zhu ◽  
Sobia Naseem ◽  
Muddassar Sarfraz ◽  
Larisa Ivascu

The mining industry plays a significant role in economic growth and development. Coal is a viable renewable energy source with 185.175 billion deposits in Thar, which has not been deeply explored. Although coal is an energy source and contributes to economic development, it puts pressure on environmental sustainability. The current study investigates Sindh Engro coal mining’s impact on environmental sustainability and human needs and interest. The Folchi and Phillips Environmental Sustainability Mathematics models are employed to measure environmental sustainability. The research findings demonstrated that Sindh Engro coal mining is potentially unsustainable for the environment. The toxic gases (methane, carbon dioxide, sulfur, etc.) are released during operational activities. The four significant environment spheres (atmosphere, hydrosphere, biosphere, and lithosphere) are negatively influenced by Thar coal mining. The second part of the analysis results shows that human needs and interests have a positive and significant relationship except for human health and safety with Sindh Engro coal mining. Environmental pollution can be controlled by utilizing environmentally friendly coal mining operations and technologies. Plantation and ecological normalization can protect the species, flora, and fauna of the Thar Desert. The government of Pakistan and the provincial government of Sind should strictly check the adaptation of environmental standards. Furthermore, the researchers should explore the environmental issues and solutions so that coal mining becomes a cost-efficient and environmental-friendly energy source in Pakistan.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2728
Author(s):  
Chun-Nan Chen ◽  
Chun-Ting Yang

The Taiwanese government has set an energy transition roadmap of 20% renewable energy supply by 2025, including a 20 GW installed PV capacity target, composed of 8 GW rooftop and 12 GW ground-mounted systems. The main trend of feed-in tariffs is downwards, having fallen by 50% over a ten-year period. Predicting the future ten-year equity internal rate of return (IRR) in this study, we examine the investability of PV systems in Taiwan when subsidies and investment costs descend. We have found that the projected subsidies scheme favours investment in small-sized PV systems. Unless the investment costs of medium-sized PV systems fall or subsidies rise over the next decade, investing in medium-sized PV systems will be less attractive. Nonlinear and linear degradation causes slight IRR differences when using higher-reliability modules.


Author(s):  
Stephan D. A. Hannot ◽  
Jort M. van Wijk

Deep ocean mining systems will have to operate often in harsh weather conditions with heavy sea states. A typical mining system consists of a Mining Support Vessel (MSV) with a Vertical Transport System (VTS) attached to it. The transport system is a pump pipeline system using centrifugal pumps. The heave motions of the ship are transferred to the pump system due to the riser-ship coupling. Ship motions thus will have a significant influence on the internal flow in the VTS. In this paper, the influence of heave motions on the internal flow in the VTS for a typical mining system for Seafloor Massive Sulfide (SMS) deposits in Papua New Guinea is analyzed. Data on the wave climate in the PNG region is used to compute the ship motions of a coupled MSV-VTS. The ship motions then are translated into forces acting on the internal flow in order to compute fluctuations in the internal flow. In this way, the workability of the mining system with respect to the system’s production can be assessed. Based on a detailed analysis of the internal flow in relation to ship motions, the relevance of a coupled analysis for the design of VTS is made clear. This paper provides a method for performing such analyses.


Author(s):  
L. V. Verzunova ◽  

The collection includes articles based on the reports of scientists of the K. A. Timiryazev RGAU-MSHA, other universities and research institutions at the International Scientific Conference dedicated to the 155th anniversary of the K. A. Timiryazev RGAU-MSHA, which was held on December 2-4, 2020. The materials are presented on topical issues: the use of new technologies and equipment in power supply systems of enterprises; innovations in heat engineering, hydraulics and energy supply of enterprises and in transport and technological machines and complexes; automotive equipment, improving the efficiency of the use of technological and transport systems; innovative technologies in crop production;applied mechanics; innovative directions for the development of the technical service system in the agro-industrial complex; quality management and metrological support in the production and technological systems of the agro-industrial complex.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6853
Author(s):  
Jaroslaw Wajs ◽  
Paweł Trybała ◽  
Justyna Górniak-Zimroz ◽  
Joanna Krupa-Kurzynowska ◽  
Damian Kasza

Mining industry faces new technological and economic challenges which need to be overcome in order to raise it to a new technological level in accordance with the ideas of Industry 4.0. Mining companies are searching for new possibilities of optimizing and automating processes, as well as for using digital technology and modern computer software to aid technological processes. Every stage of deposit management requires mining engineers, geologists, surveyors, and environment protection specialists who are involved in acquiring, storing, processing, and sharing data related to the parameters describing the deposit, its exploitation and the environment. These data include inter alia: geometries of the deposit, of the excavations, of the overburden and of the mined mineral, borders of the support pillars and of the buffer zones, mining advancements with respect to the set borders, effects of mining activities on the ground surface, documentation of landslide hazards and of the impact of mining operations on the selected elements of the environment. Therefore, over the life cycle of a deposit, modern digital technological solutions should be implemented in order to automate the processes of acquiring, sharing, processing and analyzing data related to deposit management. In accordance with this idea, the article describes the results of a measurement experiment performed in the Mikoszów open-pit granite mine (Lower Silesia, SW Poland) with the use of mobile LiDAR systems. The technology combines active sensors with automatic and global navigation system synchronized on a mobile platform in order to generate an accurate and precise geospatial 3D cloud of points.


2020 ◽  
Vol 12 (3) ◽  
pp. 444-453
Author(s):  
Igor SOKOLOV ◽  
◽  
Yury ANTIPIN ◽  
Artem ROZHKOV ◽  
◽  
...  

The purpose work. Substantiation and selection of a safe and effective option of mining technology of the experimental block in the pilot industrial mining of the Skalistoe deposit. Method of research. Analysis and synthesis of project solutions, experience in mining inclined low-thickness ore bodies, economic and mathematical modeling and optimization of the parameters of options mining systems in the conditions of the experimental block. Results of research. As a result of research it was established: - the sublevel caving mining system with the parameters adopted in the project does not guarantee the completeness of the extraction of reserves and the effectiveness of mining operations. Project indicators of extraction by sublevel caving technology with frontal ore drawing are overestimated and difficult to achieve in these geological and technical conditions (combination of low thickness and angle of ore body); project scheme for the delivery and transportation of rock mass seems impractical due to the significant volume of heading workings and increased transportation costs; - eight technically rational options of various mining systems were constructed, most relevant to the geological and technical conditions of the deposit. Five variants of the sublevel chamber system and pillar caving, a project variant of sublevel caving technology with frontal ore drawing and two options flat-back cut-and-fill system were considered; - for mining the Skalistoe deposit, according to the results of economic and mathematical modeling, optimal by the criterion of profit per 1 ton of balance reserves of ore is a option of the technology of chamber extraction with dual chambers, frontal drawing of ore by remote-controlled load-haul-dump machine and subsequent pillars caving, as having the greatest profit; - the calculations justified stable spans of dual chambers (25.3 m) and the width of panel pillars (3 m). With an allowable span of 25.3 m, the roof of the dual chambers will be stable with a safety factor of 1.41, and a panel pillar with a width of 3 m has a sufficient margin of safety (more than 1.6) in the whole range of ore body thickness variation; - the proposed scheme of delivery and transportation of rock mass, which allows to reduce the volume of tunnel works by 26% and the average length of transportation by 10-15% compared with the project. Findings. Developed in the process of modernization the technology sublevel chamber system with double-chamber, compared with the project technology, it is possible to significantly increase the efficiency of mining of the low thickness deposit of rich ores Skalistoe by reducing the specific volume of preparatory-rifled work by 34%, the cost of mined ore by 12%, losses and ore dilution – by 2 and 2.9 times, respectively.


Obiter ◽  
2021 ◽  
Vol 34 (2) ◽  
Author(s):  
PJ Badenhorst

This decision is an appeal from the decision of the South Gauteng High Court in SFF Association v Xstrata (2011 JDR 0407 (GSJ)). The court a quo decided incorrectly that the holder of an old-order mining right, which was converted into a (new) mining right in terms of the Mineral and Petroleum Resources Development Act 28 of 2002 (the “Act”), remains liable upon conversion for the payment of (contractual) royalties in terms of a mineral lease, which was concluded prior to enactment of the Act. The appeal was upheld by the Supreme Court of Appeal (“SCA”) (2012 (5) SA 60 (SCA) par 27). The decision was rendered by Wallis JA with the other judges concurring with his judgment. Prior to the Act mineral-right holders could grant a mining right to a miner against payment of royalties or other forms of consideration. At issue on appeal was whether the obligation to pay royalties in terms of a mineral lease “survives the introduction of the new regime in respect of mining rights brought about by the Act”. As indicated by the SCA, the Act fundamentally changed the legal basis upon which rights to minerals are acquired and exercised. Previously mineral rights were vested in the owner of land or the holder of mineral rights, which rights could be exercised upon acquisition of a statutory authorization to exploit the minerals. In terms of the new regime, common-law mineral rights were destroyed and “all mineral resources vested in the state as the custodian of such resources on behalf of all South Africans”, whereupon the state could confer the right to exploit such resources to applicants. Upon granting a mining right in terms of the Act (statutory) royalties have become payable to the state since 1 March 2010 of the Act and the Mineral and Petroleum Resources Royalty Act 28 of 2008. In order to prevent disruption of the mining industry, provision was made in the Act for the continuation of old-order rights for different transitional periods ranging from one to five years and conversion of such rights during the periods of transition. The transitional arrangements in Schedule II of the Act (“transitional arrangements”) inter alia ensured security of tenure of prospecting rights and mining rights and enabled holders thereof to comply with the Act. In particular, an old-order mining right remained valid for five years “subject to the terms and conditions under which it was granted” (item 7(1) of the transitional arrangements) and could be converted into a new mining right (item 7(2) of the transitional arrangements) if certain requirements were met. The applicant had to have: (a) met the requirements for lodgement of application for conversion; (b) conducted mining operations in respect of the mining right; (c) indicated that he would continue to conduct such mining operations upon conversion of the mining right; (d) had an approved environmental management programme; and (e) paid the prescribed conversion fee (item 7(3) of the transitional arrangements). To recap, the Xstrata decision dealt with an old-order mining right that had been converted into a (new) mining right and the effect of these statutory changes on rights to royalties which accrued to a former holder of mineral rights by virtue of a mineral lease. 


Sign in / Sign up

Export Citation Format

Share Document