scholarly journals Geochemistry and paleogeographic implications of Permo-Triassic metasedimentary cover from the Tauern Window (Eastern Alps)

2021 ◽  
Vol 33 (4) ◽  
pp. 401-423
Author(s):  
Gerhard Franz ◽  
Martin Kutzschbach ◽  
Eleanor J. Berryman ◽  
Anette Meixner ◽  
Anselm Loges ◽  
...  

Abstract. The chemical composition of metasediments is a valuable source of paleogeographic information about the protolith's sedimentary environment. Here, we compile major- and trace-element whole-rock data, including B contents, and 10/11B-isotope ratios from the Permo-Triassic metasedimentary cover of the Pfitsch–Mörchner basin, overlying the Variscan basement in the western Tauern Window, Eastern Alps (Austria and Italy). The basement consists of orthogneiss (“Zentralgneis”, metamorphosed Variscan granitoids with intrusion ages between 305 and 280 Ma), and the roof pendant consists of granites (amphibolites, paragneiss, and minor serpentinites). The Zentralgneis is partly hydrothermally altered into pyrite quartzite with high Al–S contents, low Na–Sr–Ca–Mg contents, and very strong depletion of the light rare earth elements. Comparison with published detailed mapping of this and other time-equivalent basins in the western Tauern Window, with radiometric age data in the literature, and with unmetamorphosed basins in the South Alpine realm yields a late Permian to Early Triassic age of sedimentation. Although during Alpine metamorphism all rocks were strongly deformed, the whole-rock chemical compositions of the metasediments were not pervasively changed during deformation. We show that the sediments were deposited in a small, probably lacustrine–fluviatile, intramontane basin, under arid to semi-arid climatic conditions. The sequence starts with metaconglomerates, which can be interpreted as a mixture of the different basement rocks, based on a combination of major-element ratios Na2O / (Na2O + K2O) and MgO / (MgO + Fe2O3) with concentrations of trace elements Cr, V, and Ni. The sequence is overlain by a fining-upwards sequence of clastic sediments, in which the behavior of K, Rb, and Sr allows the reconstruction of intense diagenetic K–B metasomatism, which raised the K2O contents up to ∼ 10 wt %. The average B content of 218 µg g−1 is well above the B content of common sediments, and the B-isotope composition reaches extremely low values of down to −33 ‰ δ11B. The top of the sequence is a lazulite quartzite, interpreted as a former conglomeratic phosphatic sandstone, which marks the transition from a closed Permian basin to an open Triassic basin. Within the clastic sequence, the presence of hydrothermal tourmalinite veins documents a hydrothermal event after deposition but before the onset of Alpine metamorphism. A metamorphosed mafic dike swarm in the orthogneiss indicates a post-Variscan event of basaltic magmatism, and this event is tentatively correlated with increased heat flow in the Triassic basin and hydrothermal activity. A consistent conceptual model of this basin and its diagenetic modifications, based on a combination of geochemical data with petrographical and field information, provides the geodynamic context of the European margin at the onset of the Alpine orogeny.

2009 ◽  
Vol 60 (4) ◽  
pp. 319-329 ◽  
Author(s):  
Gerd Rantitsch ◽  
Katalin Judik

Alpine metamorphism in the central segment of the Western Greywacke Zone (Eastern Alps)The metamorphic pattern of the central Western Greywacke Zone (Austroalpine, Eastern Alps) was investigated by organic matter reflectance, Raman spectroscopy on organic matter and clay mineralogical methods. Raman data map a 10 km wide thermal aureole along the contact zone of the Greywacke Zone to the Penninic Tauern Window. The estimated maximum temperatures of 400 °C to 200 °C decrease from South to North, that is from the contact to the uppermost parts of the Greywacke Zone. This pattern is explained by an Oligocene to Miocene thermal pulse, related to the rapid exhumation of formerly deeply buried rocks of the Penninic unit. During this event, advective heat transport and circulating fluids overprinted the Cretaceous higher anchi- to lower epizonal metamorphic pattern of the central Western Greywacke Zone.


We present an overview of geochemical data from pore waters and solid phases that clarify earliest diagenetic processes affecting modern, shallow marine carbonate sediments. Acids produced by organic matter decomposition react rapidly with metastable carbonate minerals in pore waters to produce extensive syndepositional dissolution and recrystallization. Stoichiometric relations among pore water solutes suggest that dissolution is related to oxidation of H 2 S which can accumulate in these low-Fe sediments. Sulphide oxidation likely occurs by enhanced diffusion of O 2 mediated by sulphide-oxidizing bacteria which colonize oxic/anoxic interfaces invaginating these intensely bioturbated sediments. Buffering of pore water stable isotopic compositions towards values of bulk sediment and rapid 45 Ca exchange rates during sediment incubations demonstrate that carbonate recrystallization is a significant process. Comparison of average biogenic carbonate production rates with estimated rates of dissolution and recrystallization suggests that over half the gross production is dissolved and/or recrystallized. Thus isotopic and elemental composition of carbonate minerals can experience significant alteration during earliest burial driven by chemical exchange among carbonate minerals and decomposing organic matter. Temporal shifts in palaeo-ocean carbon isotope composition inferred from bulk-rocks may be seriously compromised by facies-dependent differences in dissolution and recrystallization rates.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2949
Author(s):  
Juan I. Burneo ◽  
Ángel Benítez ◽  
James Calva ◽  
Pablo Velastegui ◽  
Vladimir Morocho

Chemical compositions of plants are affected by the initial nutrient contents in the soil and climatic conditions; thus, we analyzed for the first time the effects of soil and leaf nutrients on the compositions of the essential oils (EOs) of Siparuna muricata in four different localities in Ecuador. EOs were obtained by hydrodistillation and analyzed by gas chromatography/mass spectrometry (GC/MS) and a gas chromatography/flame ionization detector (GC/FID). Enantiomeric distribution by GC/MS was determined, modifying the enantiomeric separation of β-pinene, limonene, δ-elemene, β-bourbonene, cis-cadina-1 (6), 4-diene and atractylone. A total of 44 compounds were identified. The most representative for L1 were guaiol, atractylone and 4-diene; for L2, cis-cadina-1(6),4-diene and myrcene; for L3, atractylone, myrcene and germacrene B; and finally, L4 germacrene B, myrcene and cis-cadina-1(6),4-diene. Correlations between soil- leaf chemical elements such as Al, Ca, Fe, Mg, Mn, N and Si in the different localities were significant with chemical composition of the essential oil of Siparuna muricata; however, correlations between soil and leaf K, P, and Na were not significant. Cluster and NMDS analysis showed high dissimilarity values of secondary metabolites between four localities related with changes in soil- leaf nutrients. Thus, the SIMPER routine revealed that not all secondary metabolites contribute equally to establishing the differences in the four localities, and the largest contributions are due to differences in guaiol, cis-cadina-1(6),4-diene, atractylone and germacrene. Our investigation showed for the first time the influences of altitude and soil- leaf chemical elements in the chemical composition of the EOs of S. muricata.


2021 ◽  
Author(s):  
M.H.Ashan Madusanka ◽  
◽  
Sandun Sadanayake ◽  
lkMeththika Vithanage ◽  
◽  
...  

In several regions of the dry zone of Sri Lanka, excessive quantities of fluoride (F-) in groundwater have affected the water quality significantly. Apart from the well-known prevalence of dental fluorosis, Chronic Kidney Disease of uncertain etiology (CKDu) is widespread in different pockets in the dry zone of Sri Lanka [1]. Fluoride is one of the substances suspected of being causative of CKDu in the area. Since the kidneys retain more F- than in any other soft tissue and excess F- exposure can cause kidney disease. Within the same zone, the prevalence of CKDu varies by geographic area in a ground water and spatial distribution of selected trace elements in groundwater. The optimum F- level in drinking water, according to WHO guidelines, is 1.5 (mg/L); however, due to the unfavorable climatic conditions that exist in tropical countries, people ingest more water than normal intake, resulting in a high F- intake. The source of F- is geogenic. It has been found that the F- content of basement rocks ranges from 9.5×10-5 to 1.44×10-3 kg/L in the region [3]. Farmers consume about 2-3 liters of water a day to quench their thirst, resulting in a daily F- intake of 3×10-3-1×10-2 kg/L [4].


2018 ◽  
Vol 112 (1) ◽  
pp. 39-53
Author(s):  
Gerit E. U. Griesmeier ◽  
Ralf Schuster ◽  
Bernhard Grasemann

2021 ◽  
Author(s):  
Vincent F. Verwater ◽  
Eline Le Breton ◽  
Mark R. Handy ◽  
Vincenzo Picotti ◽  
Azam Jozi Najafabadi ◽  
...  

Abstract. Neogene indentation of the Adriatic plate into Europe led to major modifications of the Alpine orogenic structures and style of deformation in the Eastern Alps. Especially, the offset of the Periadriatic Fault by the Northern Giudicarie Fault marks the initiation of strike-slip faulting and lateral extrusion of the Eastern Alps. Questions remain on the exact role of this fault zone in changes of the Alpine orogen at depth. This necessitates quantitative analysis of the shortening, kinematics and depth of decoupling underneath the Northern Giudicarie Fault and associated fold-and thrust belt in the Southern Alps. Tectonic balancing of a network of seven cross sections through the Giudicarie Belt parallel to the local shortening direction reveals that it comprises two kinematic domains with different amounts and partly overlapping ages of shortening. These two domains are delimitated by the NW-SE oriented strike-slip Trento-Cles – Schio-Vicenza fault system, cross-cutting the Southern Alpine orogenic front in the south and merging with the Northern Giudicarie Fault in the north. The SW kinematic domain (Val Trompia sector) accommodated at least ~18 km of Late Oligocene to Early Miocene shortening. Since the Middle Miocene, the SW kinematic domain experienced a minimum of ~12–22 km shortening, whereas the NE kinematic domain underwent at least ~25–35 km shortening. Together, these domains contributed to an estimated ~53–75 km of sinistral strike-slip motion along the Northern Giudicarie Fault, implying that (most of) the offset of the Periadriatic Fault is due to Late Oligocene to Neogene indentation of the Adriatic plate into the Eastern Alps. Moreover, the faults linking the Giudicarie Belt with the Northern Giudicarie Fault reach ~15–20 km depth, indicating a thick-skinned tectonic style of deformation. These fault detachments may also connect at depth with a lower crustal Adriatic wedge that protruded north of the Periadriatic Fault and was responsible for N-S shortening and eastward escape of deeply exhumed units in the Tauern Window. Finally, the east-west lateral variation of shortening indicates internal deformation and lateral variation in strength of the Adriatic indenter, related to Permian – Mesozoic tectonic structures and paleogeographic domains.


Solid Earth ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 437-467 ◽  
Author(s):  
Emmanuelle Ricchi ◽  
Christian A. Bergemann ◽  
Edwin Gnos ◽  
Alfons Berger ◽  
Daniela Rubatto ◽  
...  

Abstract. Thorium–lead (Th-Pb) crystallization ages of hydrothermal monazites from the western, central and eastern Tauern Window provide new insights into Cenozoic tectonic evolution of the Tauern metamorphic dome. Growth domain crystallization ages range from 21.7 ± 0.4 to 10.0 ± 0.2 Ma. Three major periods of monazite growth are recorded between ∼ 22–20 (peak at 21 Ma), 19–15 (major peak at 17 Ma) and 14–10 Ma (major peak around 12 Ma), respectively, interpreted to be related to prevailing N–S shortening, in association with E–W extension, beginning strike-slip movements and reactivation of strike-slip faulting. Fissure monazite ages largely overlap with zircon and apatite fission track data. Besides tracking the thermal evolution of the Tauern dome, monazite dates reflect episodic tectonic movement along major shear zones that took place during the formation of the dome. Geochronological and structural data from the Pfitschtal area in the western Tauern Window show the existence of two cleft generations separated in time by 4 Ma and related to strike-slip to oblique-slip faulting. Moreover, these two phases overprint earlier phases of fissure formation. Highlights. In situ dating of hydrothermal monazite-(Ce). New constraints on the exhumation of the Tauern metamorphic dome. Distinct tectonic pulses recorded from east to west.


2019 ◽  
Author(s):  
Emmanuelle Ricchi ◽  
Christian A. Bergemann ◽  
Edwin Gnos ◽  
Alfons Berger ◽  
Daniela Rubatto ◽  
...  

2019 ◽  
Author(s):  
Emmanuelle Ricchi ◽  
Christian A. Bergemann ◽  
Edwin Gnos ◽  
Alfons Berger ◽  
Daniela Rubatto ◽  
...  

Abstract. Thorium-Pb crystallization ages of hydrothermal monazites from the western, central and eastern Tauern Window provide new insights into Cenozoic tectonic evolution of the Tauern metamorphic dome. Growth domain crystallization ages range from 22.3 ± 0.6 Ma to 7.7 ± 0.9 Ma. Three major periods of monazite growth are recorded between ~ 22–19 (peak at 21 Ma), 19–15 (major peak at 17 Ma) and 13–8 Ma (major peaks at 12, 10 and 8 Ma), respectively interpreted to be related to prevailing N-S shortening, in association with E-W extension, beginning strike-slip movements, and reactivation of strike-slip faulting. Fissure monazite ages largely overlap with zircon and apatite fission tracks data. Besides tracking the thermal evolution of the Tauern dome, monazite dates reflect episodic tectonic movement along major shear zones that took place during the formation of the dome. Geochronological and structural data from the Pfitschtal area in the western Tauern Window show the existence of two cleft generations separated in time by 4 Ma and related to strike-slip to oblique-slip faulting. Moreover, these two phases overprint earlier phases of fissure formation.


Sign in / Sign up

Export Citation Format

Share Document