scholarly journals Assimilation of probabilistic flood maps from SAR data into a coupled hydrologic–hydraulic forecasting model: a proof of concept

2021 ◽  
Vol 25 (7) ◽  
pp. 4081-4097
Author(s):  
Concetta Di Mauro​​​​​​​ ◽  
Renaud Hostache ◽  
Patrick Matgen ◽  
Ramona Pelich ◽  
Marco Chini ◽  
...  

Abstract. Coupled hydrologic and hydraulic models represent powerful tools for simulating streamflow and water levels along the riverbed and in the floodplain. However, input data, model parameters, initial conditions, and model structure represent sources of uncertainty that affect the reliability and accuracy of flood forecasts. Assimilation of satellite-based synthetic aperture radar (SAR) observations into a flood forecasting model is generally used to reduce such uncertainties. In this context, we have evaluated how sequential assimilation of flood extent derived from SAR data can help improve flood forecasts. In particular, we carried out twin experiments based on a synthetically generated dataset with controlled uncertainty. To this end, two assimilation methods are explored and compared: the sequential importance sampling method (standard method) and its enhanced method where a tempering coefficient is used to inflate the posterior probability (adapted method) and reduce degeneracy. The experimental results show that the assimilation of SAR probabilistic flood maps significantly improves the predictions of streamflow and water elevation, thereby confirming the effectiveness of the data assimilation framework. In addition, the assimilation method significantly reduces the spatially averaged root mean square error of water levels with respect to the case without assimilation. The critical success index of predicted flood extent maps is significantly increased by the assimilation. While the standard method proves to be more accurate in estimating the water levels and streamflow at the assimilation time step, the adapted method enables a more persistent improvement of the forecasts. However, although the use of a tempering coefficient reduces the degeneracy problem, the accuracy of model simulation is lower than that of the standard method at the assimilation time step.

2020 ◽  
Author(s):  
Concetta Di Mauro ◽  
Renaud Hostache ◽  
Patrick Matgen ◽  
Ramona Pelich ◽  
Marco Chini ◽  
...  

Abstract. Coupled hydrologic and hydraulic models represent powerful tools for simulating streamflow and water levels along the riverbed and in the floodplain. However, input data, model parameters, initial conditions and model structure represent sources of uncertainty that affect the reliability and accuracy of flood forecasts. Assimilation of satellite-based Synthetic Aperture Radar observations into a flood forecasting model are generally used to reduce such uncertainties. In this context, we evaluate how sequential assimilation of flood extent derived from synthetic aperture radar data can help in improving flood forecasts. In particular, we carried out twin experiments based on a synthetically generated data-set with controlled uncertainty. To this end, two assimilation methods are explored and compared: the Sequential Importance Sampling (standard method) and its enhanced method where a tempering coefficient is used to inflate the posterior probability (adapted method) and to reduce degeneracy. The experimental results show that the assimilation of SAR probabilistic flood maps significantly improves the predictions of streamflow and water elevation, thereby confirming the effectiveness of the data assimilation framework. In addition, the assimilation method significantly reduces the spatially averaged root mean square error of water levels with respect to the case without assimilation. The critical success index of predicted flood extent maps is significantly increased by the assimilation. While the standard method proves to be more accurate in estimating the water levels and streamflow at the assimilation time step, the adapted method enables a more persistent improvement of the forecasts. However, although the use of a tempering coefficient reduces the degeneracy problem, the accuracy of model simulation is lower at the assimilation time step.


2006 ◽  
Vol 52 (176) ◽  
pp. 89-98 ◽  
Author(s):  
J. Van Den Berg ◽  
R.S.W. Van De Wal ◽  
J. Oerlemans

AbstractThis paper assesses a two-dimensional, vertically integrated ice model for its numerical properties in the calculation of ice-sheet evolution on a sloping bed using the shallow-ice approximation. We discuss the influence of initial conditions and individual model parameters on the model’s numerical behaviour, with emphasis on varying spatial discretizations. The modelling results suffer badly from numerical problems. They show a strong dependence on gridcell size and we conclude that the widely used gridcell spacing of 20 km is too coarse. The numerical errors are small in each single time-step, but increase non-linearly over time and with volume change, as a result of feedback of the mass balance with height. We propose a new method for the calculation of the surface gradient near the margin, which improves the results significantly. Furthermore, we show that we may use dimension analysis as a tool to explain in which situations numerical problems are to be expected.


Water ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2342
Author(s):  
Axel Flinck ◽  
Nathalie Folton ◽  
Patrick Arnaud

Low water levels are a seasonal phenomenon, which can be long, short, and more or less intense, affecting entire watercourses. This phenomenon has become a concern for many countries who seek better understanding of the processes that affect it and learn how to optimally manage water resources (pumping, irrigation). Consequently, a lumped rainfall model at daily time step (GR) has been defined, calibrated, and regionalised over French territories. The input data come from SAFRAN, the distributed mesoscale atmospheric analysis system, which provides daily solid and liquid precipitation and temperature data throughout the French territory. This model could be improved, in particular to more accurately simulate the hydrological response of watersheds interacting with groundwater. The idea is to use piezometric data from the ADES bank, available in France, and to use it for the calibration phase of the hydrological model. The analysis was carried out across ten French catchments that are representative of various hydrometeorological behaviours and are located in a diverse hydrogeological context. Each catchment must be represented by a piezometer that closely represents the main aquifer that interacts with the basin. This piezometer is located on part of the watershed that is most covered in terms of its drainage network, and closest to its outlet. Different signal processing methods are used to characterise the relationship between the fluctuation of river flow, piezometric levels and rainfall time series. Potential processing methods will be carried out in the temporal domain. To quantify groundwater table inertia and that of the catchment area, correlograms were calculated from daily chronicles of flows and piezometric levels. A cross-correlatory analysis was set up to see, in more detail, the correlations between the flow rates (especially base flows) and piezometric level time series. This type of analysis makes it possible to study relationships between various observations, and tests were carried out to take this information into account during the phase of the calibration of hydrological model parameters. These different analyses will hopefully help us to use piezometric data to consolidate the quality and robustness of the modelling.


2020 ◽  
Author(s):  
emmanuel berthier ◽  
jérémie sage ◽  
emmanuel dumont ◽  
marie-laure mosini ◽  
fabrice rodriguez ◽  
...  

<p>The urbanisation leads to modifications in the water budget, not only at the surface but in groundwater as well. Few urban modelling studies deal with this topic, due to the lack of appropriate models. The URBS (Urban Runoff Branching Structure) model has been developed since several decades to simulate water transfers at the scale of an urban district. An integrated modelling approach is deliberately adopted to account for the numerous elements that influence urban hydrology: the spatial distribution of the sealed surfaces, interactions between the urban soil and water networks or underground, sustainable drainage systems…. In URBS, the spatial discretization of a catchment is based on Urban Hydrologic Elements (UHE) constituted by cadastral parcels and the adjacent streets, connected to the drainage network. URBS is able to perform continuous and long-period simulations (typically several years) of water fluxes in urban districts for small time-steps (typically few-minutes), with rainfall and potential evapotranspiration as input data.</p><p>The URBS model is adopted to study the hydrological impact of the Moulon district layout, a 200 ha development operation of the Paris-Saclay Cluster (currently underway). The project should result in an increase of sealed surfaces from 14% to 35% and a densification of underground constructions such as networks and basements. A shallow unconfined aquifer extends on the whole area. The fluctuations of ground-water levels have been monitored at an hourly time-step with 8 piezometers since 2012. Water-table levels exhibit significant variations, with near-saturation levels during winter and several meters depths during summer, although the piezometers do not all exhibit the same dynamics.</p><p>A calibration of the URBS model is first conducted for a 2-year period using only piezometric data and no flowrate data. The calibration is solely performed for the parameters influencing the soil compartment: soil permeability and parameters of the sewer infiltration process. Model performances are rather satisfactory with good representation of the observed levels for several piezometers, despite some difficulties for two piezometers exhibiting atypical variations. Once the URBS model is calibrated for the initial situation, simulations are conducted for the project layout (accounting for land-use modification and underground constructions) so as to evaluate the hydrological impacts of the development. Simulation results suggest that an increase of water table levels might be expected after the development of the district (this somehow surprising result may partly originate from the decrease of evapotranspiration fluxes associated with the increased of sealed surfaces).</p><p>The analysis of these first simulations also suggests that large uncertainties might be expected regarding the water levels computed by URBS. A simplified uncertainty analysis (based on Monte-Carlo simulations) is thus conducted to evaluate and distinguish uncertainties associated with model parameters and the total uncertainties in model outputs. While the results clearly evidence the importance of total uncertainties (although the uncertainties due to the model parameters remain low), they also confirm that groundwater depths could be reduced by the construction of the Moulon district.</p>


1994 ◽  
Vol 21 (5) ◽  
pp. 778-788 ◽  
Author(s):  
Saad Bennis ◽  
Gabriel J. Assaf

The early and precise prediction of the water levels in lakes is a major concern for public authorities. Such predictions describe the evolution of the water levels and are essential for appropriate flood control measures. In this paper, a new ARMAX-type model is developed to predict, months in advance, the monthly fluctuations of the water level of Lake Erie. The predictive variables used in the model are the past monthly water levels of Lakes Erie, Superior, and Michigan–Huron along with the estimated response times between water flow entries and exits. Two scenarios are compared. The first scenario is based on the ordinary least squares (OLS) technique in order to identify the parameters of the ARMAX-type model, to filter measurement and model noises, using the ARMAX Kalman predictor (AKP), and to optimize predictions. In this scenario, the model parameters remain unchanged throughout the simulation. The second scenario is based on the mutually interactive state parameter (MISP) technique in order to readjust the parameters of the model at each time step and to filter measurement and modelling noises through the Kalman predictor. In this scenario, the parameters of the model change with time. The analysis shows that the MISP–AKP framework has a slightly higher Nash coefficient than the OLS–AKP framework for the first month. In subsequent months, however, the quality of the predictions based on the OLS–AKP technique improves significantly. This observation also applies to the persistence and extrapolation coefficients as well as to the sample autocorrelation functions for the residuals of the Lake Erie water level forecast. It was therefore decided to apply the MISP–AKP technique to obtain the first prediction of the Lake Erie level, and the OLS–AKP technique to compute subsequent predictions. Key words: adaptive, forecast, Kalman's filter, lake levels, MISP algorithm, Great Lakes.


Author(s):  
Mona Abdeltawab Gomaa ◽  
Tamer HMA Kasem ◽  
Andreas Schlenkhoff

Submerged breakwaters are efficient structures used for shore protection. Many design features of these structures are captured upon modeling wave propagation over submerged square obstacles. The presence of separation vortices and large free surface deformations complicates the problem. A multiphase turbulent numerical model is developed using ANSYS commercial package. Careful domain discretization is done employing suitable mesh clustering to capture high gradients. Various numerical model parameters are provided, including grid size and time step. Special attention is directed towards clarifying turbulence initial conditions. Stable simulation results are obtained within acceptable computational time. Numerical results are validated quantitatively using subsurface measurements. Comparison along continuous horizontal and vertical velocity profiles is provided. Temporal and spatial model resolutions are illustrated for three test cases. The effect of wave period and height is well focused. The unsteady vortical structure is visualized. The incident wave energy is calculated and validated against theoretical values. The wave energy dissipation characteristics are briefly explained.


2016 ◽  
Vol 18 (4) ◽  
pp. 761-770

<p>Two different methodologies for hydraulic head simulation were compared in this study. The first methodology is a classic numerical groundwater flow simulation model, Princeton Transport Code (PTC), while the second one is a black-box approach that uses Artificial Neural Networks (ANNs). Both methodologies were implemented in the Bavaria region in Germany at thirty observation wells. When using PTC, meteorological and geological data are used in order to compute the simulated hydraulic head following the calibration of the appropriate model parameters. The ANNs use meteorological and hydrological data as input parameters. Different input parameters and ANN architectures were tested and the ANN with the best performance was compared with the PTC model simulation results. One ANN was trained for every observation well and the hydraulic head change was simulated on a daily time step. The performance of the two models was then compared based on the real field data from the study area. The cases in which one model outperforms the other were summarized, while the use of one instead of the other depends on the application and further use of the model.&nbsp;</p>


2021 ◽  
pp. 1-25
Author(s):  
L. Tiegang ◽  
C. Guoguang ◽  
L. Shuai

ABSTRACT A folding wing is a tactical missile launching device that needs to be miniaturised to facilitate storage, transportation, and launching; save missile and transportation space; and improve the combat capability of weapon systems. This study investigates the aeroelastic characteristics of the secondary longitudinal folding wing during the unfolding process. First, the Lagrange equation is used to establish the structural dynamics model of the folding wing, the kinematics characteristics during the deformation process are analysed, and the unfolding movement of the folding wing is obtained using the dynamic equations in the process. Then, the generalised unsteady aerodynamic force is calculated using the dipole grid method, and the multi-body dynamics equation of the folding wing is obtained. The initial angular velocity required for the deployment of the folding wing is analysed through structural model simulation, and the influence of the initial angular velocity on the opening process is studied. Finally, aeroelastic flutter analysis is performed on the folding wing, and the physical model of the folding wing verified experimentally. Results show that the type of aeroelastic response is sensitive to the initial conditions and the way the folding wing opens.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Xiao Zhang ◽  
Hongduo Zhao

The objective of this paper is to investigate the characterization of moisture diffusion inside early-age concrete slabs subjected to curing. Time-dependent relative humidity (RH) distributions of three mixture proportions subjected to three different curing methods (i.e., air curing, water curing, and membrane-forming compounds curing) and sealed condition were measured for 28 days. A one-dimensional nonlinear moisture diffusion partial differential equation (PDE) based on Fick’s second law, which incorporates the effect of curing in the Dirichlet boundary condition using a concept of curing factor, is developed to simulate the diffusion process. Model parameters are calibrated by a genetic algorithm (GA). Experimental results show that the RH reducing rate inside concrete under air curing is greater than the rates under membrane-forming compound curing and water curing. It is shown that the effect of water-to-cement (w/c) ratio on self-desiccation is significant. Lower w/c ratio tends to result in larger RH reduction. RH reduction considering both effect of diffusion and self-desiccation in early-age concrete is not sensitive to w/c ratio, but to curing method. Comparison between model simulation and experimental results indicates that the improved model is able to reflect the effect of curing on moisture diffusion in early-age concrete slabs.


Sign in / Sign up

Export Citation Format

Share Document