scholarly journals Reconciling the dynamic relationship between climate variables and vegetation productivity into a hydrological model to improve streamflow prediction under climate change

2014 ◽  
Vol 11 (9) ◽  
pp. 10593-10633
Author(s):  
Z. K. Tesemma ◽  
Y. Wei ◽  
M. C. Peel ◽  
A. W. Western

Abstract. Anthropogenic climate change is projected to enrich the atmosphere with carbon dioxide, change vegetation dynamics and influence the availability of water at the catchment. This study combines a simple model for estimating changes in leaf area index (LAI) due to climate fluctuations with the variable infiltration capacity (VIC) land surface model to improve catchment streamflow prediction under a changing climate. The combined model was applied to thirteen gauged catchments with different land cover types (crop, pasture and tree) in the Goulburn–Broken catchment, Australia during the "Millennium Drought" (2000–2009), and two future periods (2021–2050 and 2071–2100) for two emission scenarios (RCP4.5 and RCP8.5). The future climatic and modelled streamflow results were compared with the baseline historical period of 1981–2010. This region is projected to be warmer and mostly drier in the future as predicted by 38 Coupled Model Inter-comparison Project Phase 5 (CMIP5) simulations from 15 Global Climate Models (GCMs) and for two emission scenarios. The results showed that during the Millennium Drought there was about a 30–65% reduction in mean annual runoff due to reduced rainfall and increased temperature. This climate based reduction in mean annual runoff was partially offset by a drought related decline in LAI that reduced the climate related reduction of mean annual runoff, effectively increased runoff, by 2–9%. Projected climate change may reduce mean annual runoff by between 6 and 31% in the study catchments. However, when LAI is allowed to respond to changes in climate the projected declines in runoff were reduced to between 2 and 22% in comparison to when the historical LAI was considered. Incorporating changes in LAI in VIC to respond to changing climate reduced the projected declines in streamflow and confirms the importance of including the effects of changes in vegetation productivity in future projections of streamflow.

2015 ◽  
Vol 19 (6) ◽  
pp. 2821-2836 ◽  
Author(s):  
Z. K. Tesemma ◽  
Y. Wei ◽  
M. C. Peel ◽  
A. W. Western

Abstract. Anthropogenic climate change is projected to enrich the atmosphere with carbon dioxide, change vegetation dynamics and influence the availability of water at the catchment scale. This study combines a nonlinear model for estimating changes in leaf area index (LAI) due to climatic fluctuations with the variable infiltration capacity (VIC) hydrological model to improve catchment streamflow prediction under a changing climate. The combined model was applied to 13 gauged sub-catchments with different land cover types (crop, pasture and tree) in the Goulburn–Broken catchment, Australia, for the "Millennium Drought" (1997–2009) relative to the period 1983–1995, and for two future periods (2021–2050 and 2071–2100) and two emission scenarios (Representative Concentration Pathway (RCP) 4.5 and RCP8.5) which were compared with the baseline historical period of 1981–2010. This region was projected to be warmer and mostly drier in the future as predicted by 38 Coupled Model Intercomparison Project Phase 5 (CMIP5) runs from 15 global climate models (GCMs) and for two emission scenarios. The results showed that during the Millennium Drought there was about a 29.7–66.3 % reduction in mean annual runoff due to reduced precipitation and increased temperature. When drought-induced changes in LAI were included, smaller reductions in mean annual runoff of between 29.3 and 61.4 % were predicted. The proportional increase in runoff due to modeling LAI was 1.3–10.2 % relative to not including LAI. For projected climate change under the RCP4.5 emission scenario, ignoring the LAI response to changing climate could lead to a further reduction in mean annual runoff of between 2.3 and 27.7 % in the near-term (2021–2050) and 2.3 to 23.1 % later in the century (2071–2100) relative to modeling the dynamic response of LAI to precipitation and temperature changes. Similar results (near-term 2.5–25.9 % and end of century 2.6–24.2 %) were found for climate change under the RCP8.5 emission scenario. Incorporating climate-induced changes in LAI in the VIC model reduced the projected declines in streamflow and confirms the importance of including the effects of changes in LAI in future projections of streamflow.


2021 ◽  
Author(s):  
Ignacio Martin Santos ◽  
Mathew Herrnegger ◽  
Hubert Holzmann

<p>In the last two decades, different climate downscaling initiatives provided climate scenarios for Europe. The most recent initiative, CORDEX, provides Regional Climate Model (RCM) data for Europe with a spatial resolution of 12.5 km, while the previous initiative, ENSEMBLES, had a spatial resolution of 25 km. They are based on different emission scenarios, Representative Concentration Pathways (RCPs) and Special Report on Emission Scenarios (SRES) respectively.</p><p>A study carried out by Stanzel et al. (2018) explored the hydrological impact and discharge projections for the Danube basin upstream of Vienna when using either CORDEX and ENSEMBLES data. This basin covers an area of 101.810<sup></sup>km<sup>2</sup> with a mean annual discharge of 1923 m<sup>3</sup>/s at the basin outlet. The basin is dominated by the Alps, large gradients and is characterized by high annual precipitations sums which provides valuable water resources available along the basin. Hydropower therefore plays an important role and accounts for more than half of the installed power generating capacity for this area. The estimation of hydropower generation under climate change is an important task for planning the future electricity supply, also considering the on-going EU efforts and the “Green Deal” initiative.</p><p>Taking as input the results from Stanzel et al. (2018), we use transfer functions derived from historical discharge and hydropower generation data, to estimate potential changes for the future. The impact of climate change projections of ENSEMBLE and CORDEX in respect to hydropower generation for each basin within the study area is determined. In addition, an assessment of the impact on basins dominated by runoff river plants versus basins dominated by storage plants is considered.</p><p>The good correlation between discharge and hydropower generation found in the historical data suggests that discharge projection characteristics directly affect the future expected hydropower generation. Large uncertainties exist and stem from the ensembles of climate runs, but also from the potential operation modes of the (storage) hydropower plants in the future.</p><p> </p><p> </p><p>References:</p><p>Stanzel, P., Kling, H., 2018. From ENSEMBLES to CORDEX: Evolving climate change projections for Upper Danube River flow. J. Hydrol. 563, 987–999. https://doi.org/10.1016/j.jhydrol.2018.06.057</p><p> </p>


Author(s):  
K. Lin ◽  
W. Zhai ◽  
S. Huang ◽  
Z. Liu

Abstract. The impact of future climate change on the runoff for the Dongjiang River basin, South China, has been investigated with the Soil and Water Assessment Tool (SWAT). First, the SWAT model was applied in the three sub-basins of the Dongjiang River basin, and calibrated for the period of 1970–1975, and validated for the period of 1976–1985. Then the hydrological response under climate change and land use scenario in the next 40 years (2011–2050) was studied. The future weather data was generated by using the weather generators of SWAT, based on the trend of the observed data series (1966–2005). The results showed that under the future climate change and LUCC scenario, the annual runoff of the three sub-basins all decreased. Its impacts on annual runoff were –6.87%, –6.54%, and –18.16% for the Shuntian, Lantang, and Yuecheng sub-basins respectively, compared with the baseline period 1966–2005. The results of this study could be a reference for regional water resources management since Dongjiang River provides crucial water supplies to Guangdong Province and the District of Hong Kong in China.


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3358
Author(s):  
Patrik Sleziak ◽  
Roman Výleta ◽  
Kamila Hlavčová ◽  
Michaela Danáčová ◽  
Milica Aleksić ◽  
...  

The changing climate is a concern with regard to sustainable water resources. Projections of the runoff in future climate conditions are needed for long-term planning of water resources and flood protection. In this study, we evaluate the possible climate change impacts on the runoff regime in eight selected basins located in the whole territory of Slovakia. The projected runoff in the basins studied for the reference period (1981–2010) and three future time horizons (2011–2040, 2041–2070, and 2071–2100) was simulated using the HBV (Hydrologiska Byråns Vattenbalansavdelning) bucket-type model (the TUW (Technische Universität Wien) model). A calibration strategy based on the selection of the most suitable decade in the observation period for the parameterization of the model was applied. The model was first calibrated using observations, and then was driven by the precipitation and air temperatures projected by the KNMI (Koninklijk Nederlands Meteorologisch Instituut) and MPI (Max Planck Institute) regional climate models (RCM) under the A1B emission scenario. The model’s performance metrics and a visual inspection showed that the simulated runoff using downscaled inputs from both RCM models for the reference period represents the simulated hydrological regimes well. An evaluation of the future, which was performed by considering the representative climate change scenarios, indicated that changes in the long-term runoff’s seasonality and extremality could be expected in the future. In the winter months, the runoff should increase, and decrease in the summer months compared to the reference period. The maximum annual daily runoff could be more extreme for the later time horizons (according to the KNMI scenario for 2071–2100). The results from this study could be useful for policymakers and river basin authorities for the optimum planning and management of water resources under a changing climate.


2014 ◽  
Vol 7 (5) ◽  
pp. 6773-6809
Author(s):  
T. Osborne ◽  
J. Gornall ◽  
J. Hooker ◽  
K. Williams ◽  
A. Wiltshire ◽  
...  

Abstract. Studies of climate change impacts on the terrestrial biosphere have been completed without recognition of the integrated nature of the biosphere. Improved assessment of the impacts of climate change on food and water security requires the development and use of models not only representing each component but also their interactions. To meet this requirement the Joint UK Land Environment Simulator (JULES) land surface model has been modified to include a generic parametrisation of annual crops. The new model, JULES-crop, is described and evaluation at global and site levels for the four globally important crops; wheat, soy bean, maize and rice is presented. JULES-crop demonstrates skill in simulating the inter-annual variations of yield for maize and soy bean at the global level, and for wheat for major spring wheat producing countries. The impact of the new parametrisation, compared to the standard configuration, on the simulation of surface heat fluxes is largely an alteration of the partitioning between latent and sensible heat fluxes during the later part of the growing season. Further evaluation at the site level shows the model captures the seasonality of leaf area index and canopy height better than in standard JULES. However, this does not lead to an improvement in the simulation of sensible and latent heat fluxes. The performance of JULES-crop from both an earth system and crop yield model perspective is encouraging however, more effort is needed to develop the parameterisation of the model for specific applications. Key future model developments identified include the specification of the yield gap to enable better representation of the spatial variability in yield.


2020 ◽  
Vol 52 (2) ◽  
pp. 377-385
Author(s):  
Mathias Kalfayan ◽  
Jan R. E. Taylor

Dragonflies (Odonata) are considered to be valuable indicators of hydroecosystems. This study reports the composition of the dragonfly assemblages in four wetlands of Samos Island, Greece, in a geographic area especially vulnerable to climate change where a trend towards a drier climate has been observed in the last decades. Dragonfly assemblages have not yet been studied on Samos. The analysis based on the number of different species and their autochthony revealed clear differences among the wetlands. The eutrophic Glyfada Lake, despite its variable hydrology resulting from drought – the seasonal decrease in water availability – harboured the largest diversity of dragonflies, larger than the oligotrophic Mesokampos Lake. The assemblage of the spring and rivulet at Mytilini, although also influenced by drought, had its own set of species of high autochthony. The seasonal brackish lake and marsh of Psili Ammos had the lowest number of species and was dominated by one very abundant breeding species. Drought was the main factor affecting the number and composition of species. The collected data create a reference for the future monitoring of trends in the composition of odonatofauna under the changing climate of Samos Island.


2020 ◽  
Author(s):  
Kaushika Gujjanadu Suryaprakash ◽  
Hari Prasad Kotnur Suryanarayana Rao

<p>India is primarily an agronomic country and most of the cropping in the Rabi season depends on the rainwater availability. With the ill effects of climate change cropping up, the agriculture sector is expected to take a major hit. This study takes a technical approach on the impact of climate change on the irrigation requirement of wheat cropping by studying the future irrigation requirement based on the temperature and rainfall that can be expected to occur in the future timelines. A root water uptake model involving the solution of the non-linear Richards equation to assess the root-zone moisture movement is formulated and validated. The inputs of the model include the crop data, which, in this case is obtained by field experimentation at the irrigation field laboratory at IIT Roorkee and weather data, which is obtained from the CANESM2 General circulation model for the historical and projected timescales. The historical GCM data for thirty years is bias corrected using the observed data from the India Meteorological department (IMD). The validated root water uptake model is applied to the historical and projected data for a 60 year span for two emission scenarios for RCP 4.5 and 8.5. The output was obtained as soil moisture profiles and frequencies of irrigation required. It was seen that for both the mild and high emission scenarios, the number of irrigation events per cropping period increased. This increase is assessed using variability analysis and for its impacts on the water resources management systems. The variability assessment showed the variation of the irrigation water requirement on annual and decadal scales. This is useful in understanding the historical and expected crop water requirement in view of the climate change effects.</p>


2014 ◽  
Vol 6 (2) ◽  
pp. 118-126 ◽  
Author(s):  
Kwame Emmanuel

Purpose – Population growth, climate change, shortages of oil and other resources will have dramatic implication on where, when and how tourists travel in the future. This will also reshape the tourism industry for the future. Knowing what will happen in the future has always fascinated mankind from time immemorial. However, forecasting and predictions require not only a systematic approach to development but also an imagination and the ability to think and see beyond the ordinary. As a result, the purpose of this paper is to underscore the projected northward shift in tourism demand due to the global impacts of climate change and the lack of policy attention. Design/methodology/approach – A rapid assessment of the literature was conducted to explore tourism flows to the Caribbean in a changing climate and recommendations for adaptation. Findings – Tourism demand from major markets such as Europe and North America may be reduced significantly as tourists travel to other destinations, which are closer to home and have a more favourable climate. Regulation of carbon emissions from long haul flights will also influence demand substitution. Despite this projection, current policies in the Caribbean promote further development of the climate sensitive 3S model without anticipating a possible decrease in demand in the future. Research limitations/implications – Research implications include a recalibration of tourism policy and diversification of Caribbean tourism and economies. Originality/value – Recommendations are outlined for a critical issue that is not on the policy agenda.


2013 ◽  
Vol 4 (3) ◽  
pp. 302-316
Author(s):  
Qiuan Zhu ◽  
Hong Jiang ◽  
Changhui Peng ◽  
Jinxun Liu ◽  
Xiuqin Fang ◽  
...  

The spatial and temporal variation and uncertainty of precipitation and runoff in China were compared and evaluated between historical and future periods under different climate change scenarios. The precipitation pattern is derived from observed and future projected precipitation data for historical and future periods, respectively. The runoff is derived from simulation results in historical and future periods using a dynamic global vegetation model (DGVM) forced with historical observed and global climate models (GCMs) future projected climate data, respectively. One GCM (CGCM3.1) under two emission scenarios (SRES A2 and SRES B1) was used for the future period simulations. The results indicated high uncertainties and variations in climate change effects on hydrological processes in China: precipitation and runoff showed a significant increasing trend in the future period but a decreasing trend in the historical period at the national level; the temporal variation and uncertainty of projected precipitation and runoff in the future period were predicted to be higher than those in the historical period; the levels of precipitation and runoff in the future period were higher than those in the historical period. The change in trends of precipitation and runoff are highly affected by different climate change scenarios. GCM structure and emission scenarios should be the major sources of uncertainty.


Sign in / Sign up

Export Citation Format

Share Document