scholarly journals Thermal conductivity of unsaturated clay-rocks

2008 ◽  
Vol 5 (4) ◽  
pp. 2409-2423 ◽  
Author(s):  
D. Jougnot ◽  
A. Revil

Abstract. The thermal conductivity of porous materials can be related to the electrical conductivity and therefore electrical resistivity tomography can be used to map the thermal conductivity of porous rocks. In this paper, a relationship is developed to connect the thermal conductivity of unsaturated clay-rocks to the thermal conductivity of the different phases of the porous composite, a textural parameter called the thermal formation factor, and the tortuosity of the water phase. The thermal formation factor is related to the electrical formation factor and to the first Archie's first exponent m. The tortuosity of the water phase is related to the second Archie's exponent n and to the relative saturation of the water phase. A very good agreement is obtained between the new model and thermal conductivity measurements of packs of glass beads and cores of the Callovo-Oxfordian argillite at different saturations of the water phase. Anisotropy of the effective thermal conductivity is mainly due to the anisotropy of the thermal conductivity of the solid phase.

2010 ◽  
Vol 14 (1) ◽  
pp. 91-98 ◽  
Author(s):  
D. Jougnot ◽  
A. Revil

Abstract. The parameters used to describe the electrical conductivity of a porous material can be used to describe also its thermal conductivity. A new relationship is developed to connect the thermal conductivity of an unsaturated porous material to the thermal conductivity of the different phases of the composite, and two electrical parameters called the first and second Archie's exponents. A good agreement is obtained between the new model and thermal conductivity measurements performed using packs of glass beads and core samples of the Callovo-Oxfordian clay-rocks at different saturations of the water phase. We showed that the three model parameters optimised to fit the new model against experimental data (namely the thermal conductivity of the solid phase and the two Archie's exponents) are consistent with independent estimates. We also observed that the anisotropy of the effective thermal conductivity of the Callovo-Oxfordian clay-rock was mainly due to the anisotropy of the thermal conductivity of the solid phase.


1963 ◽  
Vol 3 (03) ◽  
pp. 185-188
Author(s):  
G.P. Willhite ◽  
J.S. Dranoff ◽  
J.M. Smith

Abstract Heat transfer rates were measured in sandstones with flow of gases perpendicular to the direction of energy transfer. Effective thermal conductivities keg ranged from 0.7 to 1.7 Btu/(hr)(ft)(F). The contribution of the solid phase appeared to be the most important in these consolidated materials, although the thermal conductivity of the gas had some effect.The velocity of the gas through the pores of the sandstones had no influence upon ker up to values of 168 lb/(hr) (sq ft) in agreement with data obtained for unconsolidated beds of glass beads. The present results indicated that gas mixing, and hence heat transfer by convection in the pores, is less for perpendicular transfer of energy than when fluid flow and energy transfer are in the same direction. HEAT TRANSFER PERPENDICULAR TO FLUID FLOW IN POROUS ROCKS Heat transfer in porous media with pore sizes in the micron range depends upon the fluid in the pores and the geometry of the solid phase. The best characterized system is a bed of solid spherical particles. Heat transfer in this system has been studied extensively (Ref. 8 summarizes the literature up to 1959) when the pores contain stagnant fluid. When the fluid is in motion the directions of flow and energy transfer have an effect on the heat transfer rates, as demonstrated by comparing the work of Willhite, et al, 13 for perpendicular flow and that of Kunii and Smith for parallel flow of energy and fluid. For perpendicular flow, no increase in effective thermal conductivity ke was noted up to mass velocities G of 77 lb/(hr) (sq ft). In contrast, for parallel flow ke increased with G in the same range of flow rates. These higher values of k in the direction of flow also have been observed in beds of larger particles, 0.1- to 0.5-in. diameter.For beds of consolidated materials, such as porous rocks, data are not available for these comparisons, although Adivarahan reported results for the parallel case. Hence the primary objective of this work was to measure ke values for perpendicular flow of fluid and energy in porous rocks. Of interest also was the variation in effective conductivity with fluid velocity. APPARATUS AND PROCEDURE In the experimental method, a constant heat flux was applied to the inner surface of an annular section of the porous rock. By cooling the outer wall, a temperature gradient through the annular sample was established and measured with thermocouples placed within the sample at various radial positions, and at three elevations (A, B, C).The location of the 2-in. O.D., 3.75-in. long sample in the apparatus is shown in Fig. 1. Fluid entered the bottom (1) of the 3-in. I.D. (approximate) steel shell, flowed upwards through the sample and out at the top (3). Pressure taps (2,4) were used to check the permeability of the sample. The energy flowed radially from the centrally-located electric heater through the sample and was absorbed in the water-cooled jacket.The samples studied were naturally occurring sandstones from different locations with the properties given in Table 1. These materials are identical with those used by Adivarahan for the parallel flow of energy and fluid. Prior to use they were refluxed with toluene to remove hydrocarbons and leached with distilled water to remove soluble salts. Each sample was visually examined and discarded if large nonhomogeneities, such as cracks or stone particles, were noted. SPEJ P. 185^


2018 ◽  
Vol 25 (6) ◽  
pp. 1157-1165
Author(s):  
Taoufik Mnasri ◽  
Adel Abbessi ◽  
Rached Ben Younes ◽  
Atef Mazioud

AbstractThis work focuses on identifying the thermal conductivity of composites loaded with phase-change materials (PCMs). Three configurations are studied: (1) the PCMs are divided into identical spherical inclusions arranged in one plane, (2) the PCMs are inserted into the matrix as a plate on the level of the same plane of arrangement, and (3) the PCMs are divided into identical spherical inclusions arranged periodically in the whole matrix. The percentage PCM/matrix is fixed for all cases. A comparison among the various situations is made for the first time, thus providing a new idea on how to insert PCMs into composite matrices. The results show that the composite conductivity is the most important consideration in the first case, precisely when the arrangement plane is parallel with the flux and diagonal to the entry face. In the present work, we are interested in exploring the solid-solid PCMs. The PCM polyurethane and a wood matrix are particularly studied.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Kan Ankang ◽  
Han Houde

Based on the fractal theory, the geometric structure inside an open cell polyurethane foam, which is widely used as adiabatic material, is illustrated. A simplified cell fractal model is created. In the model, the method of calculating the equivalent thermal conductivity of the porous foam is described and the fractal dimension is calculated. The mathematical formulas for the fractal equivalent thermal conductivity combined with gas and solid phase, for heat radiation equivalent thermal conductivity and for the total thermal conductivity, are deduced. However, the total effective heat flux is the summation of the heat conduction by the solid phase and the gas in pores, the radiation, and the convection between gas and solid phase. Fractal mathematical equation of effective thermal conductivity is derived with fractal dimension and vacancy porosity in the cell body. The calculated results have good agreement with the experimental data, and the difference is less than 5%. The main influencing factors are summarized. The research work is useful for the enhancement of adiabatic performance of foam materials and development of new materials.


2014 ◽  
Vol 918 ◽  
pp. 21-26
Author(s):  
Chen Kang Huang ◽  
Yun Ching Leong

In this study, the transport theorem of phonons and electrons is utilized to create a model to predict the thermal conductivity of composite materials. By observing or assuming the dopant displacement in the matrix, a physical model between dopant and matrix can be built, and the composite material can be divided into several regions. In each region, the phonon or electron scattering caused by boundaries, impurities, or U-processes was taken into account to calculate the thermal conductivity. The model is then used to predict the composite thermal conductivity for several composite materials. It shows a pretty good agreement with previous studies in literatures. Based on the model, some discussions about dopant size and volume fraction are also made.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sarah B. Duckworth ◽  
Xavier Gaona ◽  
Alexander Baumann ◽  
Kathy Dardenne ◽  
Jörg Rothe ◽  
...  

Abstract The solubility of 99Tc(IV) was investigated from undersaturation conditions in NaCl–Na2SO4 (0.3 M ≤ I ≤ 5.0 M), MgCl2–MgSO4 (I = 13.5 M) and CaCl2–CaSO4 (I = 13.5 M) systems with 0.001 M ≤ [SO4 2−]tot ≤ 1.0 M and 1 ≤ pH m  ≤ 12 (with pH m  = −log[H+], in molal units). Reducing conditions were set by either Sn(II) or Fe(0). Special efforts were dedicated to accurately characterize the correction factors A m required for the determination of pH m from the experimentally measured pH values in the mixed salt systems investigated, with pH m  = pHexp + A m . The combination of (pe + pH m ) measurements with Pourbaix diagrams of Tc suggests that technetium is present in its +IV redox state. This hypothesis is confirmed by XANES, which unambiguously shows the predominance of Tc(IV) both in the aqueous and solid phases of selected solubility samples. XRD and SEM–EDS support the amorphous character of the solid phase controlling the solubility of Tc(IV). EXAFS data confirm the predominance of TcO2(am, hyd) at pH m  > 1.5, whereas the formation of a Tc(IV)–O–Cl solid phase is hinted at lower pHm values in concentrated NaCl–Na2SO4 systems with ≈5 M NaCl. Solubility data collected in sulfate-containing systems are generally in good agreement with previous solubility studies conducted in sulfate-free NaCl, MgCl2 and CaCl2 solutions of analogous ionic strength. Although the complexation of Tc(IV) with sulfate cannot be completely ruled out, these results strongly support that, if occurring, complexation must be weak and has no significant impact on the solubility of Tc(IV) in dilute up to highly saline media. Solubility upper-limits determined in this work can be used for source term estimations including the effect of sulfate in a variety of geochemical conditions relevant in the context of nuclear waste disposal.


2016 ◽  
Vol 30 (30) ◽  
pp. 1650373 ◽  
Author(s):  
Li Xue ◽  
Yi-Ming Ren ◽  
Zheng-Long Hu

[Formula: see text] is a promising thermoelectric (TE) material for high temperature TE applications. This work systematically investigated the structural, elastic and thermodynamic properties of [Formula: see text] ([Formula: see text] = 0, 0.25, 0.5, 0.75 and 1) by density functional theory. The calculated lattice volume is expanded with the increase of Ag content, but this expansion is anisotropic. The lattice parameter along [Formula: see text]-axis is linear expansion, and along [Formula: see text]-axis is parabolic expansion, which is in good agreement with available experimental data. The phase stability of [Formula: see text] alloy is studied by analyzing the formation energy, cohesive energy and elastic constants. Shear modulus, Young’s modulus, sound velocities, Debye temperature and the minimum thermal conductivity are obtained from the calculated elastic constants. The results show that Ag substitution could reduce the lattice thermal conductivity, which is helpful for improving the TE properties of [Formula: see text].


2012 ◽  
Vol 614-615 ◽  
pp. 688-694 ◽  
Author(s):  
Yi Wang ◽  
Guo Min Shen

In this paper, at first, an effective soil thermal conductivity model was established. Single factor regression analysis for 6 uncertain factors contained in the model was then conducted respectively. Finally, the primary and secondary characters of these uncertain factors were analyzed by using the orthogonal test. The analysis results show that the effective soil thermal conductivity has linear relationships with the saturation degree of unsaturated soil and the depth of water table and has power function relationships with other 4 uncertain factors; the porosity of unsaturated soil has the greatest effect on the effective soil thermal properties, followed by saturation degree of unsaturated soil, porosity of saturated soil, solid phase thermal conductivity of unsaturated soil, solid phase thermal conductivity of saturated soil and the depth of water table.


2005 ◽  
Vol 70 (11) ◽  
pp. 1363-1371 ◽  
Author(s):  
Ljubisa Nikolic ◽  
Vesna Nikolic ◽  
Vlada Veljkovic ◽  
Dejan Skala

The influence of the geometry of a reciprocating plate column (diameter), superficial gas velocity, vibration intensity and content of the solid phase in the column on the gas hold-up in a three phase column (G-L-S) were investigated in this study. For comparison, the gas hold-up was also analyzed in a gas-liquid system (G-L) in the same type of column. Good agreement between the experimentally determined values of the gas hold-up and those calculated on the basis of the derived correlation for the G-L and G-L-S system was obtained.


Sign in / Sign up

Export Citation Format

Share Document