scholarly journals EVALUATION OF HIGH RESOLUTION URBAN LULC FOR SEASONAL FORECASTS OF URBAN CLIMATE USING WRF MODEL

Author(s):  
M. Bhavana ◽  
K. Gupta ◽  
P. K. Pal ◽  
A. S. Kumar ◽  
J. Gummapu

<p><strong>Abstract.</strong> In all mesoscale models with urban parameterizations, urban area represented as a single entity to represent the influence of urban morphology. In the last few years, many Urban Canopy Models (UCM) have been developed by many researchers to model the urban energy fluxes, but their spatial resolution is too coarse. These models proves to be a hindrance in obtaining improved results for urban climatic studies due to their coarser resolution. So downscaling of climatic variables in an urban area is primary significance for urban climatic studies. Weather Research Forecasting Model (WRF) is the one of the models that has been used widely for downscaling the climatic variables at urban scale and it has been also integrated with UCM along with a number of urban sub physics options. In this study, modified high resolution Land Use Land Cover (LULC) representing three urban classes for the city of Chandigarh has been ingested into the model to examine and validate the model output with respect to ground observations. The model has been configured with two domains with a resolution of 3KM and 1KM and simulations were carried out for three days of the of four seasons of India, winter, summer, monsoon and post-monsoon for the analysis of seasonal variation. Improved values of Root Mean Square Error (RMSE) for surface temperature, relative humidity and wind speed was observed with modified high resolution LULC with BEM option as compared to single urban built up class. In terms of temperature, summer season showed very less RMSE than other seasons, i.e, 0.76<span class="thinspace"></span>&amp;deg;C and . In terms of relative humidity, monsoon season showed very less RMSE than other seasons, i.e., 2.63% and in terms of wind speed, post monsoon season is giving less RMSE i.e., 1.01<span class="thinspace"></span>m/s.</p>

2017 ◽  
Vol 17 (2) ◽  
pp. 184-197 ◽  
Author(s):  
Saifullah Khan ◽  
Mahmood Ul Hasan

AbstractEvapotranspiration is the main element of aridity and desertification and to balance the natural hydrological processes. Pakistan has a high degree of evapotranspiration, as it is in subtropical belt, with long sunshine duration and low cloudiness in summers. June is the warmest month, when the evapotranspiration exceeds 7mm (0.28inches), whereas, January is the coldest month, when evapotranspiration of the country falls to 1mm (0.04inches). The maximum evapotranspiration has been recorded at the southern latitudes of the country (Hyderabad and Jacobabad), while it decreases towards northwest (mountainous region) and Gilgit-Baltistan (Astore and Skardu). This variation in evapotranspiration is due to fluctuation in temperature, precipitation, sunshine duration, wind speed, relative humidity, physical relief and latitudinal as well as altitudinal extend of the country. The average evapotranspiration of Pakistan is 4.5mm with an increase of 1.0mm during 1931-2015. In winter and summer season, the lower Indus basin, has recorded high evapotranspiration as compared to the northern mountainous region. The average evapotranspiration of Pakistan during winter season is 2.7mm, while in summer it is 6.3mm. This variation is due to the variation in the length of day and night, humidity, precipitation, surface pressure, wind speed, and topography of the land. During cold season the average evapotranspiration of the country is 13.7mm, pre-monsoon season 17.1mm, monsoon season 15.8mm and post monsoon season 8mm. Obviously, the highest evapotranspiration of Pakistan has recorded during pre-monsoon season with extreme temperature, scarce precipitation, long sunshine duration, lowest relative humidity, low pressure, and calm winds and chilly condition. Furthermore, during cold (0.1mm), pre-monsoon (3.5mm), and monsoon season (2.2mm) the evapotranspiration shows an increase, where as it reveals a negative deviation of -5.6mm in post monsoon season due to increase in the precipitation from reversible monsoon lows at the southern latitudes of the country. Generally, the evapotranspiration of Pakistan increases from northwest to southeast and a main agent of delimitation of the arid region of the country. The main factors that cause variation in the evapotranspiration of the country from south towards north are temperature, precipitation, sunshine duration, relative humidity, surface pressure, wind speed, fogs, cloudiness, topography, latitudinal and altitudinal extend of the country that required further research.


Author(s):  
M. Bhavana ◽  
K. Gupta ◽  
P. K. Pal

<p><strong>Abstract.</strong> Urban areas are treated as a single entity by mesoscale urban canopy models (UCM) for assessing the influence of urban morphology on climate. Weather Research and Forecasting Model (WRF) coupled with UCM along with urban physics options to describe the urban features such as Single Layer Urban Canopy Model (SLUCM), Building Energy Parameterization (BEP) and Building Energy Model (BEM) which enumerates the influence of urban features on the local scale other than the bulk parameterization (no urban physics option), which is generally used in most of the operational forecasting models. Besides, WRF model also enables to integrate multi-class Urban Land Use Land Cover (LULC) whereas most of the globally available LULC depict urban area as single urban built-up class. This study aims to analyze performance of high resolution urban LULC and urban physics options for Chandigarh area by downscaling climatic variables up to 1km and its validation with the ground observation data. The inner domain (1<span class="thinspace"></span>km resolution) was configured with default LULC for one set of simulations and multi-class urban LULC for other set of simulations. All the simulations were carried out for 3 days (August 19&amp;ndash;21, 2017) due to computational restrictions by employing all the four urban physics options. It has been found that multi-class urban LULC yielded better results than single class urban built –up simulation when validated with respect to ground observation. The RMSE values for multi-class urban LULC provided less RMSE than single class urban LULC, those are in terms of temperature at 2<span class="thinspace"></span>m, relative humidity and wind speed are 0.91<span class="thinspace"></span>&amp;deg;C, 2.63% and 1.82<span class="thinspace"></span>m/s respectively. Similarly, BEP+BEM urban physics option provided reduced RMSE values than the SLUCM and BEP scheme. The RMSE values in terms of temperature at 2<span class="thinspace"></span>m, relative humidity and wind speed are 1.11<span class="thinspace"></span>&amp;deg;C, 4.39% and 2.62<span class="thinspace"></span>m/s respectively.</p>


2020 ◽  
Author(s):  
Sorin Cheval ◽  
Alexandru Dumitrescu ◽  
Vlad Amihăesei

&lt;p&gt;The Landsat 8 satellites retrieve land surface temperature (LST) values at 30-m spatial resolution since 2013, but the urban climate studies frequently use a limited number of images due to the problems related to missing data over the area of interest. This paper proposes a procedure for building a long-term LST data set in an urban area using the high-resolution Landsat 8 imagery. The methodology is demonstrated on 94 images available through 2013-2018 over Bucharest (Romania). The raw images contain between 1.1% and 58.4% missing data. Based on an Empirical Orthogonal Filling (EOF) procedure, the LST missing values were reconstructed by means of the function dineof implemented in sinkr R packages. The output was used for exploring the LST climatology in the area of interest. The gap filling procedure was validated by comparing artificial gaps created in the real data sets. At the best of our knowledge, this is the first study using full spatial coverage high resolution remote sensing data for investigating the urban climate. The validation pursued the comparison between LST and Ta at 3 WMO stations monitoring the climate of Bucharest, and returned strong correlation coefficients (R2 &gt; 0.9). Further research may be envisaged aiming to update the data set with more recent LST information and to combine data from various sources in order to build a more robust urban LST climatology.&lt;/p&gt;&lt;p&gt;This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CCCDI -&lt;br&gt;UEFISCDI, project number COFUND-SUSCROP-SUSCAP-2, within PNCDI III.&lt;/p&gt;


MAUSAM ◽  
2022 ◽  
Vol 73 (1) ◽  
pp. 173-180
Author(s):  
NAVNEET KAUR ◽  
M.J. SINGH ◽  
SUKHJEET KAUR

This paper aims to study the long-term trends in different weather parameters, i.e., temperature, rainfall, rainy days, sunshine hours, evaporation, relative humidity and temperature over Lower Shivalik foothills of Punjab. The daily weather data of about 35 years from agrometeorological observatory of Regional Research Station Ballowal Saunkhri representing Lower Shivalik foothills had been used for trend analysis for kharif (May - October), rabi (November - April), winter (January - February), pre-monsoon (March - May), monsoon (June - September) and post monsoon (October - December) season. The linear regression method has been used to estimate the magnitude of change per year and its coefficient of determination, whose statistical significance was checked by the F test. The annual maximum temperature, morning and evening relative humidity has increased whereas rainfall, evaporation sunshine hours and wind speed has decreased significantly at this region. No significant change in annual minimum temperature and diurnal range has been observed. Monthly maximum temperature revealed significant increase except January, June and December, whereas, monthly minimum temperature increased significantly for February, March and October and decreased for June. Among different seasons, maximum temperature increased significantly for all seasons except winter season, whereas, minimum temperature increased significantly for kharif and post monsoon season only. The evaporation, sunshine hours and wind speed have also decreased and relative humidity decreased significantly at this region. Significant reduction in kharif, monsoon and post monsoon rainfall has been observed at Lower Shivalik foothills. As the region lacks assured irrigation facilities so decreasing rainfall and change in the other weather parameters will have profound effects on the agriculture in this region so there is need to develop climate resilient agricultural technologies.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1593
Author(s):  
Wei Duan ◽  
Junpeng Yuan ◽  
Xu Duan ◽  
Dian Feng

Using tropical cyclone data along with sea surface temperature data (SST) and atmospheric circulation reanalysis data during the period of 1980–2019, the seasonal variation of tropical cyclone genesis (TCG), and the related oceanic and atmospheric environments over the Arabian Sea (AS) and Bay of Bengal (BOB) are compared and analyzed in detail. The results show that TCG in both the BOB and AS present bimodal seasonal variations, with two peak periods in the pre-monsoon and post-monsoon season, respectively. The frequencies of TCG in the BOB and AS are comparatively similar in the pre-monsoon season but significantly different in the post-monsoon season. During the post-monsoon season of October–November, the TCG frequency in the BOB is approximately 2.3 times higher than that of the AS. The vertical wind shear and relative humidity in the low- and middle-level troposphere are the two major contributing factors for TCG, and the combination of these two factors determines the bimodal seasonal cycle of TCG in both the AS and BOB. In the pre-monsoon season, an increase in the positive contribution of vertical wind shear and a decrease in the negative contribution of relative humidity are collaboratively favorable for TCG in the AS and BOB. During the monsoon season, the relative humidity factor shows a significant and positive contribution to TCG, but its positive effect is offset by the strong negative effect of vertical wind shear and potential intensity, thus resulting in very low TCG in the AS and BOB. However, the specific relative contributions of each environmental factor to the TCG variations in the AS and BOB basins are quite different, especially in the post-monsoon season. In the post-monsoon season, the primary positive contributor to TCG in the AS basin is vertical wind shear, while the combined effect of vertical wind shear and relative humidity dominates in the BOB TCG. From the analysis of environmental factors, atmospheric circulations, and genesis potential index (GPI), the BOB is found to have more favorable TCG conditions than the AS, especially in the post-monsoon season.


2016 ◽  
Vol 29 (22) ◽  
pp. 7977-7989 ◽  
Author(s):  
Hiroyuki Murakami ◽  
Gabriel A. Vecchi ◽  
Gabriele Villarini ◽  
Thomas L. Delworth ◽  
Richard Gudgel ◽  
...  

Abstract Skillful seasonal forecasting of tropical cyclone (TC; wind speed ≥17.5 m s−1) activity is challenging, even more so when the focus is on major hurricanes (wind speed ≥49.4 m s−1), the most intense hurricanes (category 4 and 5; wind speed ≥58.1 m s–1), and landfalling TCs. This study shows that a 25-km-resolution global climate model [High-Resolution Forecast-Oriented Low Ocean Resolution (FLOR) model (HiFLOR)] developed at the Geophysical Fluid Dynamics Laboratory (GFDL) has improved skill in predicting the frequencies of major hurricanes and category 4 and 5 hurricanes in the North Atlantic as well as landfalling TCs over the United States and Caribbean islands a few months in advance, relative to its 50-km-resolution predecessor climate model (FLOR). HiFLOR also shows significant skill in predicting category 4 and 5 hurricanes in the western North Pacific and eastern North Pacific, while both models show comparable skills in predicting basin-total and landfalling TC frequency in the basins. The improved skillful forecasts of basin-total TCs, major hurricanes, and category 4 and 5 hurricane activity in the North Atlantic by HiFLOR are obtained mainly by improved representation of the TCs and their response to climate from the increased horizontal resolution rather than by improvements in large-scale parameters.


Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1957
Author(s):  
Papa Malick Ndiaye ◽  
Ansoumana Bodian ◽  
Lamine Diop ◽  
Abdoulaye Deme ◽  
Alain Dezetter ◽  
...  

Understanding evapotranspiration and its long-term trends is essential for water cycle studies, modeling and for water uses. Spatial and temporal analysis of evapotranspiration is therefore important for the management of water resources, particularly in the context of climate change. The objective of this study is to analyze the trend of reference evapotranspiration (ET0) as well as its sensitivity to climatic variables in the Senegal River basin. Mann-Kendall’s test and Sen’s slope were used to detect trends and amplitude changes in ET0 and climatic variables that most influence ET0. Results show a significant increase in annual ET0 for 32% of the watershed area over the 1984–2017 period. A significant decrease in annual ET0 is observed for less than 1% of the basin area, mainly in the Sahelian zone. On a seasonal scale, ET0 increases significantly for 32% of the basin area during the dry season and decreases significantly for 4% of the basin during the rainy season. Annual maximum, minimum temperatures and relative humidity increase significantly for 68%, 81% and 37% of the basin, respectively. However, a significant decrease in wind speed is noted in the Sahelian part of the basin. The wind speed decrease and relative humidity increase lead to the decrease in ET0 and highlight a “paradox of evaporation” in the Sahelian part of the Senegal River basin. Sensitivity analysis reveals that, in the Senegal River basin, ET0 is more sensitive to relative humidity, maximum temperature and solar radiation.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Qingqing Yin ◽  
Li Li ◽  
Xiang Guo ◽  
Rangke Wu ◽  
Benyun Shi ◽  
...  

Abstract Background The global spread of mosquito-borne diseases (MBD) has presented increasing challenges to public health. The transmission of MBD is mainly attributable to the biting behaviors of female mosquitoes. However, the ecological pattern of hourly host-seeking behavior in Aedes albopictus and its association with climatic variables are still not well understood, especially for a precise requirement for establishing an effective risk prediction system of MBD transmission. Methods Mosquito samples and data on mosquito hourly density and site-specific climatic variables, including temperature, relative humidity, illuminance and wind speed, were collected simultaneously in urban outdoor environments in Guangzhou during 2016–2018. Kernel regression models were used to assess the temporal patterns of hourly host-seeking behavior in mosquito populations, and negative binomial regression models in the Bayesian framework were used to investigate the associations of host-seeking behavior with climatic variables. Results Aedes albopictus was abundant, constituting 82% (5569/6790) of the total collected mosquitoes. Host-seeking behavior in Ae. albopictus varied across time and was significantly influenced by climatic variables. The predicted hourly mosquito densities showed non-linear relationships with temperature and illuminance, whereas density increased with relative humidity but generally decreased with wind speed. The range of temperature estimates for female biting was 16.4–37.1 °C, peaking at 26.5 °C (95% credible interval: 25.3–28.1). During the favorable periods, biting behavior of female Ae. albopictus was estimated to occur frequently all day long, presenting a bimodal distribution with peaks within 2–3 h around both dawn and dusk (05:00–08:00 h and 16:00–19:00 h). Moreover, a short-term association in hourly density between the females and males was found. Conclusions Our field-based modeling study reveals that hourly host-seeking behavior of Ae. albopictus exhibits a complex pattern, with hourly variation constrained significantly by climatic variables. These findings lay a foundation for improving MBD risk assessments as well as practical strategies for vector control. For instances of all-day-long frequent female biting during the favorable periods in Guangzhou, effective integrated mosquito control measures must be taken throughout the day and night.


2020 ◽  
Vol 12 (18) ◽  
pp. 7426
Author(s):  
Feili Wei ◽  
Ze Liang ◽  
Yueyao Wang ◽  
Zhibin Huang ◽  
Huan Wang ◽  
...  

Urbanization has a significant impact on urban precipitation. Existing studies on precipitation pay more attention to the impact of natural and meteorological factors, and the research on the impact of urbanization on the spatial patterns of precipitation is still very deficient. Based on geographic detection, this study quantitatively analyzed the dominant, interaction, and sensitivity factors that affect precipitation changes in more than 150 urban units in Jing–Jin–Ji (Beijing–Tianjin–Hebei) during the process of urbanization. The research findings show the following: ① The dominant factors have seasonal differences in terms of the precipitation variation in Jing–Jin–Ji. The leading factors in summer were the change of radiation and relative humidity. The dominant factors in winter were the changes in radiation, relative humidity, and wind speed. On the annual scale, the dominant factors were the changes in relative humidity, aerosol optical depth, radiation, and wind speed. ② Whether in summer, in winter, or on the annual scale, urbanization can enhance the explanatory power of spatial variation of urban precipitation through interaction with natural/meteorological factors, and all the dominant interaction factors show a nonlinear enhancement trend. ③ The night light intensity and urban heat island can greatly amplify the explanatory power of other factors, thus becoming the most sensitive factor in urbanization precipitation changes. The above research can provide a theoretical basis for the formulation of urban climate policies and urban planning.


MAUSAM ◽  
2022 ◽  
Vol 53 (4) ◽  
pp. 425-438
Author(s):  
M. MOHAPATRA

The linear trends in the monthly, seasonal and annual mean maximum temperature, minimum temperature, average temperature, diurnal range of temperature, rainfall, relative humidities at 0830 & 1730 hr IST of Bangalore city and airport have been analysed based on the data for the period from 1960-95. The variation in surface wind over Bangalore during above period has also been studied to find out impact of urbanisation on weather parameters. It is found that Bangalore city is becoming warmer in terms of mean maximum & mean minimum temperatures. Rate of increase is significantly higher over Bangalore city (central observatory) than that over airport during winter months. Similarly the rising trend of average temperature of Bangalore city is higher than of Bangalore airport during October to April being significantly so during winter season. Also the diurnal range of temperature of Bangalore is becoming larger in winter months with the rising trend being higher over Bangalore city than over airport. Even though rainfall does not show any significant trend, the rising trend during monsoon & falling trend during post monsoon season over Bangalore city are higher than that of Bangalore airport. Also though both Bangalore city & airport show maximum rising trend in mean relative humidity at 0830 hr IST during winter, the rate of rise is less over Bangalore city. Similarly though the relative humidity at 1730 hr IST shows decreasing trend during all the seasons, the rate of decrease is less over Bangalore city for all seasons except post monsoon season. The mean maximum, minimum and average temperatures and relative humidities show cyclic variation of their monthly trend coefficients during the year.


Sign in / Sign up

Export Citation Format

Share Document