scholarly journals A volcanic-hazard demonstration exercise to assess and mitigate the impacts of volcanic ash clouds on civil and military aviation

2020 ◽  
Vol 20 (6) ◽  
pp. 1719-1739 ◽  
Author(s):  
Marcus Hirtl ◽  
Delia Arnold ◽  
Rocio Baro ◽  
Hugues Brenot ◽  
Mauro Coltelli ◽  
...  

Abstract. Volcanic eruptions comprise an important airborne hazard for aviation. Although significant events are rare, e.g. compared to the threat of thunderstorms, they have a very high impact. The current state of tools and abilities to mitigate aviation hazards associated with an assumed volcanic cloud was tested within an international demonstration exercise. Experts in the field assembled at the Schwarzenberg barracks in Salzburg, Austria, in order to simulate the sequence of procedures for the volcanic case scenario of an artificial eruption of the Etna volcano in Italy. The scope of the exercise ranged from the detection (based on artificial observations) of the assumed event to the issuance of early warnings. Volcanic-emission-concentration charts were generated applying modern ensemble techniques. The exercise products provided an important basis for decision-making for aviation traffic management during a volcanic-eruption crisis. By integrating the available wealth of data, observations and modelling results directly into widely used flight-planning software, it was demonstrated that route optimization measures could be implemented effectively. With timely and rather precise warnings available, the new tools and processes tested during the exercise demonstrated vividly that a vast majority of flights could be conducted despite a volcanic plume being widely dispersed within a high-traffic airspace over Europe. The resulting number of flight cancellations was minimal.

2019 ◽  
Author(s):  
Marcus Hirtl ◽  
Delia Arnold ◽  
Rocio Baro ◽  
Hugues Brenot ◽  
Mauro Coltelli ◽  
...  

Abstract. Volcanic eruptions comprise one of the most important airborne hazards for aviation. Although significant events are rare, they have a very high impact. The current state of tools and abilities to mitigate aviation hazards associated with an assumed volcanic cloud was tested within an international demonstration exercise. Experts in the field assembled at the Schwarzenberg barracks in Salzburg, Austria, in order to simulate the sequence of procedures for the volcanic case scenario of an artificial eruption of Etna volcano in Italy. The scope of the exercise ranged from the detection of the assumed event to the issuance of early warnings. Volcanic emission concentration charts were generated applying modern ensemble techniques. The exercise products provided an important basis for decision making for aviation traffic management during a volcanic eruption crisis. By integrating the available wealth of data, observations and modelling results directly into a widely used flight planning software, it was demonstrated that route optimization measures could be implemented effectively. With timely and rather precise warnings available, the new tools and processes tested during the exercise demonstrated vividly that a vast majority of flights could be conducted despite a volcanic plume widely dispersed within a high-traffic airspace over Europe. The resulting number of flight cancellations was minimal.


2021 ◽  
Vol 83 (2) ◽  
Author(s):  
S. Engwell ◽  
L. Mastin ◽  
A. Tupper ◽  
J. Kibler ◽  
P. Acethorp ◽  
...  

AbstractUnderstanding the location, intensity, and likely duration of volcanic hazards is key to reducing risk from volcanic eruptions. Here, we use a novel near-real-time dataset comprising Volcanic Ash Advisories (VAAs) issued over 10 years to investigate global rates and durations of explosive volcanic activity. The VAAs were collected from the nine Volcanic Ash Advisory Centres (VAACs) worldwide. Information extracted allowed analysis of the frequency and type of explosive behaviour, including analysis of key eruption source parameters (ESPs) such as volcanic cloud height and duration. The results reflect changes in the VAA reporting process, data sources, and volcanic activity through time. The data show an increase in the number of VAAs issued since 2015 that cannot be directly correlated to an increase in volcanic activity. Instead, many represent increased observations, including improved capability to detect low- to mid-level volcanic clouds (FL101–FL200, 3–6 km asl), by higher temporal, spatial, and spectral resolution satellite sensors. Comparison of ESP data extracted from the VAAs with the Mastin et al. (J Volcanol Geotherm Res 186:10–21, 2009a) database shows that traditional assumptions used in the classification of volcanoes could be much simplified for operational use. The analysis highlights the VAA data as an exceptional resource documenting global volcanic activity on timescales that complement more widely used eruption datasets.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Suvarna Fadnavis ◽  
Rolf Müller ◽  
Tanusri Chakraborty ◽  
T. P. Sabin ◽  
Anton Laakso ◽  
...  

AbstractThe Indian summer monsoon rainfall (ISMR) is vital for the livelihood of millions of people in the Indian region; droughts caused by monsoon failures often resulted in famines. Large volcanic eruptions have been linked with reductions in ISMR, but the responsible mechanisms remain unclear. Here, using 145-year (1871–2016) records of volcanic eruptions and ISMR, we show that ISMR deficits prevail for two years after moderate and large (VEI > 3) tropical volcanic eruptions; this is not the case for extra-tropical eruptions. Moreover, tropical volcanic eruptions strengthen El Niño and weaken La Niña conditions, further enhancing Indian droughts. Using climate-model simulations of the 2011 Nabro volcanic eruption, we show that eruption induced an El Niño like warming in the central Pacific for two consecutive years due to Kelvin wave dissipation triggered by the eruption. This El Niño like warming in the central Pacific led to a precipitation reduction in the Indian region. In addition, solar dimming caused by the volcanic plume in 2011 reduced Indian rainfall.


2021 ◽  
Vol 13 (2) ◽  
pp. 832
Author(s):  
Aleksandar Blagojević ◽  
Sandra Kasalica ◽  
Željko Stević ◽  
Goran Tričković ◽  
Vesna Pavelkić

Sustainable traffic system management under conditions of uncertainty and inappropriate road infrastructure is a responsible and complex task. In Bosnia and Herzegovina (BiH), there is a large number of level crossings which represent potentially risky places in traffic. The current state of level crossings in BiH is a problem of the greatest interest for the railway and a generator of accidents. Accordingly, it is necessary to identify the places that are currently a priority for the adoption of measures and traffic control in order to achieve sustainability of the whole system. In this paper, the Šamac–Doboj railway section and passive level crossings have been considered. Fifteen different criteria were formed and divided into three main groups: safety criteria, road exploitation characteristics, and railway exploitation characteristics. A novel integrated fuzzy FUCOM (full consistency method)—fuzzy PIPRECIA (pivot pairwise relative criteria importance assessment) model was formed to determine the significance of the criteria. When calculating the weight values of the main criteria, the fuzzy Heronian mean operator was used for their averaging. The evaluation of level crossings was performed using fuzzy MARCOS (measurement of alternatives and ranking according to compromise solution). An original integrated fuzzy FUCOM–Fuzzy PIPRECIA–Fuzzy MARCOS model was created as the main contribution of the paper. The results showed that level crossings 42 + 690 (LC4) and LC8 (82 + 291) are the safest considering all 15 criteria. The verification of the results was performed through four phases of sensitivity analysis: resizing of an initial fuzzy matrix, comparative analysis with other fuzzy approaches, simulations of criterion weight values, and calculation of Spearman’s correlation coefficient (SCC). Finally, measures for the sustainable performance of the railway system were proposed.


2021 ◽  
Author(s):  
Rafael Castro ◽  
Tushar Mittal ◽  
Stephen Self

<p>The 1883 Krakatau eruption is one of the most well-known historical volcanic eruptions due to its significant global climate impact as well as first recorded observations of various aerosol associated optical and physical phenomena. Although much work has been done on the former by comparison of global climate model predictions/ simulations with instrumental and proxy climate records, the latter has surprisingly not been studied in similar detail. In particular, there is a wealth of observations of vivid red sunsets, blue suns, and other similar features, that can be used to analyze the spatio-temporal dispersal of volcanic aerosols in summer to winter 1883. Thus, aerosol cloud dispersal after the Krakatau eruption can be estimated, bolstered by aerosol cloud behavior as monitored by satellite-based instrument observations after the 1991 Pinatubo eruption. This is one of a handful of large historic eruptions where this analysis can be done (using non-climate proxy methods). In this study, we model particle trajectories of the Krakatau eruption cloud using the Hysplit trajectory model and compare our results with our compiled observational dataset (principally using Verbeek 1884, the Royal Society report, and Kiessling 1884).</p><p>In particular, we explore the effect of different atmospheric states - the quasi-biennial oscillation (QBO) which impacts zonal movement of the stratospheric volcanic plume - to estimate the phase of the QBO in 1883 required for a fast-moving westward cloud. Since this alone is unable to match the observed latitudinal spread of the aerosols, we then explore the impact of an  umbrella cloud (2000 km diameter) that almost certainly formed during such a large eruption. A large umbrella cloud, spreading over ~18 degrees within the duration of the climax of the eruption (6-8 hours), can lead to much quicker latitudinal spread than a point source (vent). We will discuss the results of the combined model (umbrella cloud and correct QBO phase) with historical accounts and observations, as well as previous work on the 1991 Pinatubo eruption. We also consider the likely impacts of water on aerosol concentrations and the relevance of this process for eruptions with possible significant seawater interactions, like Krakatau. We posit that the role of umbrella clouds is an under-appreciated, but significant, process for beginning to model the climatic impacts of large volcanic eruptions.</p>


2018 ◽  
Author(s):  
Xue Wu ◽  
Sabine Griessbach ◽  
Lars Hoffmann

Abstract. Volcanic sulfate aerosol is an important source of sulfur for Antarctica where other local sources of sulfur are rare. Mid- and high latitude volcanic eruptions can directly influence the aerosol budget of the polar stratosphere. However, tropical eruptions can also enhance polar aerosol load following long-range transport. In the present work, we analyze the volcanic plume of a tropical eruption, Mount Merapi in October 2010, using the Lagrangian particle dispersion model Massive-Parallel Trajectory Calculations (MPTRAC), Atmospheric Infrared Sounder (AIRS) SO2 observations and Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) aerosol observations. We investigate the pathway and transport efficiency of the volcanic aerosol from the tropical tropopause layer (TTL) to the lower stratosphere over Antarctica. We first estimated the time- and height-resolved SO2 injection time series over Mount Merapi during the explosive eruption using the AIRS SO2 observations and a backward trajectory approach. Then the SO2 injections were tracked for up to 6 months using the MPTRAC model. The Lagrangian transport simulation of the volcanic plume was compared to MIPAS aerosol observations and showed good agreement. Both of the simulation and the observations presented in this study suggest that a significant amount of aerosols of the volcanic plume from the Merapi eruption was transported from the tropics to the south of 60 °S within one month after the eruption and even further to Antarctica in the following two months. This relatively fast meridional transport of volcanic aerosol was mainly driven by quasi-horizontal mixing from the TTL to the extratropical lower stratosphere, which was facilitated by the weakening of the subtropical jet during the seasonal transition from austral spring to summer and linked to the westerly phase of the quasi-biennial oscillation (QBO). When the plume went to southern high latitudes, the polar vortex was displaced from the south pole, so the volcanic plume was carried to the south pole without penetrating the polar vortex. Based on the model results, the most efficient pathway for the quasi-horizontal mixing was in between the isentropic surfaces of 360 and 430 K. Although only 4 % of the initial SO2 load was transported into the lower stratosphere south of 60 °S, the Merapi eruption contributed about 8800 tons of sulfur to the Antarctic lower stratosphere. This indicates that the long-range transport under favorable meteorological conditions enables tropical volcanic eruptions to be an important remote source of sulfur for the Antarctic stratosphere.


2007 ◽  
Vol 7 (2) ◽  
pp. 4657-4672 ◽  
Author(s):  
A. J. Prata ◽  
S. A. Carn ◽  
A. Stohl ◽  
J. Kerkmann

Abstract. Volcanic eruptions emit gases, ash particles and hydrometeors into the atmosphere, occasionally reaching great heights to reside in the stratospheric overworld where they affect the radiative balance of the atmosphere and the earth's climate. Here we use satellite measurements and a Lagrangian particle dispersion model to determine the mass loadings, vertical penetration, horizontal extent, dispersion and transport of volcanic gases and particles in the stratosphere from the volcanic cloud emitted during the 20 May 2006 eruption of Soufriere Hills volcano, Montserrat, West Indies. Infrared, ultraviolet and microwave radiation measurements from two polar orbiters are used to quantify the gases and particles, and track the movement of the cloud for 23 days, over a distance of ~18 000 km. Approximately, 0.1±0.01 Tg(S) was injected into the stratosphere in the form of SO2: the largest single sulfur input to the stratosphere in 2006. Microwave Limb Sounder measurements indicate an enhanced mass of HCl of ~0.003–0.01 Tg. Geosynchronous satellite data reveal the rapid nature of the stratospheric injection and indicate that the eruption cloud contained ~2 Tg of ice, with very little ash reaching the stratosphere. These new satellite measurements of volcanic gases and particles can be used to test the sensitivity of climate to volcanic forcing and assess the impact of stratospheric sulfates on climate cooling.


2021 ◽  
Author(s):  
Ilaria Petracca ◽  
Davide De Santis ◽  
Stefano Corradini ◽  
Lorenzo Guerrieri ◽  
Matteo Picchiani ◽  
...  

<p>When an eruption event occurs it is necessary to accurately and rapidly determine the position and evolution during time of the volcanic cloud and its parameters (such as Aerosol Optical Depth-AOD, effective radius-Re and mass-Ma of the ash particles), in order to ensure the aviation security and the prompt management of the emergencies.</p><p>Here we present different procedures for volcanic ash cloud detection and retrieval using S3 SLSTR (Sentinel-3 Sea and Land Surface Temperature Radiometer) data collected the 22 June at 00:07 UTC by the Sentinel-3A platform during the Raikoke (Kuril Islands) 2019 eruption.</p><p>The volcanic ash detection is realized by applying an innovative machine learning based algorithm, which uses a MultiLayer Perceptron Neural Network (NN) to classify a SLSTR image in eight different surfaces/objects, distinguishing volcanic and weather clouds, and the underlying surfaces. The results obtained with the NN procedure have been compared with two consolidated approaches based on an RGB channels combination in the visible (VIS) spectral range and the Brightness Temperature Difference (BTD) procedure that exploits the thermal infrared (TIR) channels centred at 11 and 12 microns (S8 and S9 SLSTR channels respectively). The ash volcanic cloud is correctly identified by all the models and the results indicate a good agreement between the NN classification approach, the VIS-RGB and BTD procedures.</p><p>The ash retrieval parameters (AOD, Re and Ma) are obtained by applying three different algorithms, all exploiting the volcanic cloud “mask” obtained from the NN detection approach. The first method is the Look Up Table (LUT<sub>p</sub>) procedure, which uses a Radiative Transfer Model (RTM) to simulate the Top Of Atmosphere (TOA) radiances in the SLSTR thermal infrared channels (S8, S9), by varying the aerosol optical depth and the effective radius. The second algorithm is the Volcanic Plume Retrieval (VPR), based on a linearization of the radiative transfer equation capable to retrieve, from multispectral satellite images, the abovementioned parameters. The third approach is a NN model, which is built on a training set composed by the inputs-outputs pairs TOA radiances vs. ash parameters. The results of the three retrieval methods have been compared, considering as reference the LUT<sub>p</sub> procedure, since that it is the most consolidated approach. The comparison shown promising agreement between the different methods, leading to the development of an integrated approach for the monitoring of volcanic ash clouds using SLSTR.</p><p>The results presented in this work have been obtained in the sphere of the VISTA (Volcanic monItoring using SenTinel sensors by an integrated Approach) project, funded by ESA and developed within the EO Science for Society framework [https://eo4society.esa.int/projects/vista/].</p>


2021 ◽  
Author(s):  
Claire Lamotte ◽  
Jonathan Guth ◽  
Virginie Marécal ◽  
Giuseppe Salerno ◽  
Nicolas Theys ◽  
...  

<p><span>Volcanic eruptions are events that can eject several tons of material into the atmosphere. Among these emissions, sulfur dioxide is the main sulfurous volcanic gas. It can form sulfate aerosols that are harmful to health or, being highly soluble, it can condense in water particles and form acid rain. Thus, volcanic eruptions can have an environmental impact on a regional scale.</span></p><p><span>The Mediterranean region is very interesting from this point of view because it is a densely populated region with a strong anthropogenic activity, therefore polluted, in which Mount Etna is also located. Mount Etna is the largest passive SO<sub>2</sub> emitter in Europe, but it can also sporadically produce strong eruptive events. It is then likely that the additional input of sulfur compounds into the atmosphere by volcanic emissions may have effects on the regional atmospheric sulfur composition.</span></p><p><span>We are particularly investigating the eruption of Mount Etna on December 24, 2018 [Corradini et al, 2020]. This eruption took place along a 2 km long breach on the side of the volcano, thus at a lower altitude than its main crater. About 100 kt of SO<sub>2</sub> and 35 kt of ash were released in total, between December 24 and 30. With the exception of the 24th, the quantities of ash were always lower than the SO<sub>2.</sub></span></p><p><span>The availability of the TROPOMI SO<sub>2</sub><sub></sub></span><span>column </span><span>estimates, at fine </span><span>spatial</span><span> resolution </span><span>(7 km x 3.5 km at nadir) and </span><span>associated averaging kernels</span><span>,</span><span> during this eruptive period made it also an excellent case study. </span><span>It </span><span>allow</span><span>s</span><span> us to follow the evolution of SO<sub>2</sub> in the volcanic plume over several days.</span></p><p><span>Using the CNRM MOCAGE chemistry-transport model (CTM), we aim to quantify the impact of this volcanic eruption on atmospheric composition, sulfur deposition and air quality at the regional scale. The comparison of the model with the TROPOMI observation data allows us to assess the ability of the model to properly represent the plume. In spite of a particular meteorological situation, leading to a complex plume transport, MOCAGE shows a good agreement with TROPOMI observations. Thus, from the MOCAGE simulation, we can evaluate the impact of the eruption on the regional concentrations of SO<sub>2</sub> and sulfate aerosols, but also analyse the quantities of dry and wet deposition, and compare it to surface measurement stations.</span></p>


2018 ◽  
Vol 11 (11) ◽  
pp. 6289-6307 ◽  
Author(s):  
Charles J. Vernon ◽  
Ryan Bolt ◽  
Timothy Canty ◽  
Ralph A. Kahn

Abstract. The dispersion of particles from wildfires, volcanic eruptions, dust storms, and other aerosol sources can affect many environmental factors downwind, including air quality. Aerosol injection height is one source attribute that mediates downwind dispersion, as wind speed and direction can vary dramatically with elevation. Using plume heights derived from space-based, multi-angle imaging, we examine the impact of initializing plumes in the NOAA Air Resources Laboratory's Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model with satellite-measured vs. nominal (model-calculated or VAAC-reported) injection height on the simulated dispersion of six large aerosol plumes. When there are significant differences in nominal vs. satellite-derived particle injection heights, especially if both heights are in the free troposphere or if one injection height is within the planetary boundary layer (PBL) and the other is above the PBL, differences in simulation results can arise. In the cases studied with significant nominal vs. satellite-derived injection height differences, the HYSPLIT model can represent plume evolution better, relative to independent satellite observations, if the injection height in the model is constrained by hyper-stereo satellite retrievals.


Sign in / Sign up

Export Citation Format

Share Document