scholarly journals Satellite Hydrology Observations as Operational Indicators of Forecasted Fire Danger across the Contiguous United States

Author(s):  
Alireza Farahmand ◽  
E. Natasha Stavros ◽  
John T. Reager ◽  
Ali Behrangi ◽  
James Randerson ◽  
...  

Abstract. Traditional methods for assessing fire danger often depend on meteorological forecasts, which have reduced reliability after ~ 10 days. Recent studies have demonstrated long lead-time correlations between pre-fire-season hydrological variables such as soil moisture and later fire occurrence or area burned, yet no potential value of these relationships for operational forecasting have not been studied. Here, we use soil moisture data refined by remote sensing observations of terrestrial water storage from NASA’s GRACE mission and vapor pressure deficit from NASA’s AIRS mission to generate monthly predictions of fire danger at scales commensurate with regional management. We test the viability of predictors within nine US Geographic Area Coordination Centers (GACCs) using regression models specific to each GACC. Results show that the model framework improves interannual wildfire burned area prediction relative to climatology for all GACCs. This demonstrates the importance of hydrological information to extend operational forecast ability into the months preceding wildfire activity.

2020 ◽  
Vol 20 (4) ◽  
pp. 1097-1106 ◽  
Author(s):  
Alireza Farahmand ◽  
E. Natasha Stavros ◽  
John T. Reager ◽  
Ali Behrangi ◽  
James T. Randerson ◽  
...  

Abstract. Traditional methods for assessing fire danger often depend on meteorological forecasts, which have reduced reliability after ∼10 d. Recent studies have demonstrated long lead-time correlations between pre-fire-season hydrological variables such as soil moisture and later fire occurrence or area burned, yet the potential value of these relationships for operational forecasting has not been studied. Here, we use soil moisture data refined by remote sensing observations of terrestrial water storage from NASA's Gravity Recovery and Climate Experiment (GRACE) mission and vapor pressure deficit from NASA's Atmospheric Infrared Sounder (AIRS) mission to generate monthly predictions of fire danger at scales commensurate with regional management. We test the viability of predictors within nine US geographic area coordination centers (GACCs) using regression models specific to each GACC. Results show that the model framework improves interannual wildfire-burned-area prediction relative to climatology for all GACCs. This demonstrates the importance of hydrological information to extend operational forecast ability into the months preceding wildfire activity.


2019 ◽  
Author(s):  
Sílvia A. Nunes ◽  
Carlos C. DaCamara ◽  
Kamil F. Turkman ◽  
Teresa J. Calado ◽  
Ricardo M. Trigo

Abstract. Portugal is recurrently affected by large wildfire events that have serious impacts at the socio-economic and environmental levels and dramatic consequences associated with the loss of lives and the destruction of the landscape. Accordingly, seasonal forecasts are required to assist fire managers, thus contributing to alter the historically-based purely reactive response. In this context, we present and discuss a statistical model to estimate the probability that the total burned area during summer will exceed a given threshold. The statistical model uses meteorological information that rates the accumulation of thermal and vegetation stress. Outlooks for the 39-year study period (1980–2018) show that, when the statistical model is applied from May 26 to June 30, out of the six severe years, only one year is not anticipated as potentially severe and, out of the six weak years, only one is not anticipated as potentially weak. The availability of outlooks of wildfire potential with an anticipation of up to one month before the starting of the fire season, such as the one proposed here, may serve to provide clear directions for the fire community when planning prevention and combating fire events.


2019 ◽  
Vol 19 (7) ◽  
pp. 1459-1470 ◽  
Author(s):  
Sílvia A. Nunes ◽  
Carlos C. DaCamara ◽  
Kamil F. Turkman ◽  
Teresa J. Calado ◽  
Ricardo M. Trigo ◽  
...  

Abstract. Portugal is recurrently affected by large wildfire events that have serious impacts at the socio-economic and environmental levels and dramatic consequences associated with the loss of lives and the destruction of the landscape. Accordingly, seasonal forecasts are required to assist fire managers, thus contributing to alter the historically based purely reactive response. In this context, we present and discuss a statistical model to estimate the probability that the total burned area during summer will exceed a given threshold. The statistical model uses meteorological information that rates the accumulation of thermal and vegetation stress. Outlooks for the 39-year study period (1980–2018) show that, when the statistical model is applied from 26 May to 30 June, out of the six severe years, only one year is not anticipated as potentially severe and, out of the six weak years, only one is not anticipated as potentially weak. The availability of outlooks of wildfire potential with an anticipation of up to 1 month before the starting of the fire season, such as the one proposed here, may serve to provide clear directions for the fire community when planning prevention and combating fire events.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 522
Author(s):  
Akli Benali ◽  
Ana C. L. Sá ◽  
João Pinho ◽  
Paulo M. Fernandes ◽  
José M. C. Pereira

The extreme 2017 fire season in Portugal led to widespread recognition of the need for a paradigm shift in forest and wildfire management. We focused our study on Alvares, a parish in central Portugal located in a fire-prone area, which had 60% of its area burned in 2017. We evaluated how different fuel treatment strategies may reduce wildfire hazard in Alvares through (i) a fuel break network with different extents corresponding to different levels of priority and (ii) random fuel treatments resulting from a potential increase in stand-level management intensity. To assess this, we developed a stochastic wildfire simulation system (FUNC-SIM) that integrates uncertainties in fuel distribution over the landscape. If the landscape remains unchanged, Alvares will have large burn probabilities in the north, northeast and center-east areas of the parish that are very often associated with high fireline intensities. The different fuel treatment scenarios decreased burned area between 12.1–31.2%, resulting from 1–4.6% increases in the annual treatment area and reduced the likelihood of wildfires larger than 5000 ha by 10–40%. On average, simulated burned area decreased 0.22% per each ha treated, and cost-effectiveness decreased with increasing area treated. Overall, both fuel treatment strategies effectively reduced wildfire hazard and should be part of a larger, holistic and integrated plan to reduce the vulnerability of the Alvares parish to wildfires.


Fire ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 32
Author(s):  
Judy A. Foulkes ◽  
Lynda D. Prior ◽  
Steven W. J. Leonard ◽  
David M. J. S. Bowman

Australian montane sclerophyll shrubland vegetation is widely considered to be resilient to infrequent severe fire, but this may not be the case in Tasmania. Here, we report on the vegetative and seedling regeneration response of a Tasmanian non-coniferous woody montane shrubland following a severe fire, which burned much of the Great Pine Tier in the Central Plateau Conservation Area during the 2018–2019 fire season when a historically anomalously large area was burned in central Tasmania. Our field survey of a representative area burned by severe crown fire revealed that more than 99% of the shrubland plants were top-killed, with only 5% of the burnt plants resprouting one year following the fire. Such a low resprouting rate means the resilience of the shrubland depends on seedling regeneration from aerial and soil seedbanks or colonization from plants outside the burned area. Woody species’ seedling densities were variable but generally low (25 m−2). The low number of resprouters, and reliance on seedlings for recovery, suggest the shrubland may not be as resilient to fire as mainland Australian montane shrubland, particularly given a warming climate and likely increase in fire frequency.


2021 ◽  
Vol 13 (2) ◽  
pp. 313
Author(s):  
Yongfang Xu ◽  
Zhaohui Lin ◽  
Chenglai Wu

Central Asia is prone to wildfires, but the relationship between wildfires and climatic factors in this area is still not clear. In this study, the spatiotemporal variation in wildfire activities across Central Asia during 1997–2016 in terms of the burned area (BA) was investigated with Global Fire Emission Database version 4s (GFED4s). The relationship between BA and climatic factors in the region was also analyzed. The results reveal that more than 90% of the BA across Central Asia is located in Kazakhstan. The peak BA occurs from June to September, and remarkable interannual variation in wildfire activities occurs in western central Kazakhstan (WCKZ). At the interannual scale, the BA is negatively correlated with precipitation (correlation coefficient r = −0.66), soil moisture (r = −0.68), and relative humidity (r = −0.65), while it is positively correlated with the frequency of hot days (r = 0.37) during the burning season (from June to September). Composite analysis suggests that the years in which the BA is higher are generally associated with positive geopotential height anomalies at 500 hPa over the WCKZ region, which lead to the strengthening of the downdraft at 500 hPa and the weakening of westerlies at 850 hPa over the region. The weakened westerlies suppress the transport of water vapor from the Atlantic Ocean to the WCKZ region, resulting in decreased precipitation, soil moisture, and relative humidity in the lower atmosphere over the WCKZ region; these conditions promote an increase in BA throughout the region. Moreover, the westerly circulation index is positively correlated (r = 0.53) with precipitation anomalies and negatively correlated (r = −0.37) with BA anomalies in the WCKZ region during the burning season, which further underscores that wildfires associated with atmospheric circulation systems are becoming an increasingly important component of the relationship between climate and wildfire.


2014 ◽  
Vol 14 (6) ◽  
pp. 1477-1490 ◽  
Author(s):  
A. Venäläinen ◽  
N. Korhonen ◽  
O. Hyvärinen ◽  
N. Koutsias ◽  
F. Xystrakis ◽  
...  

Abstract. Understanding how fire weather danger indices changed in the past and how such changes affected forest fire activity is important in a changing climate. We used the Canadian Fire Weather Index (FWI), calculated from two reanalysis data sets, ERA-40 and ERA Interim, to examine the temporal variation of forest fire danger in Europe in 1960–2012. Additionally, we used national forest fire statistics from Greece, Spain and Finland to examine the relationship between fire danger and fires. There is no obvious trend in fire danger for the time period covered by ERA-40 (1960–1999), whereas for the period 1980–2012 covered by ERA Interim, the mean FWI shows an increasing trend for southern and eastern Europe which is significant at the 99% confidence level. The cross correlations calculated at the national level in Greece, Spain and Finland between total area burned and mean FWI of the current season is of the order of 0.6, demonstrating the extent to which the current fire-season weather can explain forest fires. To summarize, fire risk is multifaceted, and while climate is a major determinant, other factors can contribute to it, either positively or negatively.


2017 ◽  
Vol 21 (9) ◽  
pp. 4533-4549 ◽  
Author(s):  
Mohammad Shamsudduha ◽  
Richard G. Taylor ◽  
Darren Jones ◽  
Laurent Longuevergne ◽  
Michael Owor ◽  
...  

Abstract. GRACE (Gravity Recovery and Climate Experiment) satellite data monitor large-scale changes in total terrestrial water storage (ΔTWS), providing an invaluable tool where in situ observations are limited. Substantial uncertainty remains, however, in the amplitude of GRACE gravity signals and the disaggregation of TWS into individual terrestrial water stores (e.g. groundwater storage). Here, we test the phase and amplitude of three GRACE ΔTWS signals from five commonly used gridded products (i.e. NASA's GRCTellus: CSR, JPL, GFZ; JPL-Mascons; GRGS GRACE) using in situ data and modelled soil moisture from the Global Land Data Assimilation System (GLDAS) in two sub-basins (LVB: Lake Victoria Basin; LKB: Lake Kyoga Basin) of the Upper Nile Basin. The analysis extends from January 2003 to December 2012, but focuses on a large and accurately observed reduction in ΔTWS of 83 km3 from 2003 to 2006 in the Lake Victoria Basin. We reveal substantial variability in current GRACE products to quantify the reduction of ΔTWS in Lake Victoria that ranges from 80 km3 (JPL-Mascons) to 69 and 31 km3 for GRGS and GRCTellus respectively. Representation of the phase in TWS in the Upper Nile Basin by GRACE products varies but is generally robust with GRGS, JPL-Mascons, and GRCTellus (ensemble mean of CSR, JPL, and GFZ time-series data), explaining 90, 84, and 75 % of the variance respectively in "in situ" or "bottom-up" ΔTWS in the LVB. Resolution of changes in groundwater storage (ΔGWS) from GRACE ΔTWS is greatly constrained by both uncertainty in changes in soil-moisture storage (ΔSMS) modelled by GLDAS LSMs (CLM, NOAH, VIC) and the low annual amplitudes in ΔGWS (e.g. 1.8–4.9 cm) observed in deeply weathered crystalline rocks underlying the Upper Nile Basin. Our study highlights the substantial uncertainty in the amplitude of ΔTWS that can result from different data-processing strategies in commonly used, gridded GRACE products; this uncertainty is disregarded in analyses of ΔTWS and individual stores applying a single GRACE product.


FLORESTA ◽  
2002 ◽  
Vol 32 (2) ◽  
Author(s):  
Ronaldo Viana Soares ◽  
Juliana Ferreira Santos

O conhecimento do perfil dos incêndios florestais é muito importante para o planejamento do controle dos mesmos. O objetivo deste trabalho foi estabelecer o perfil dos incêndios florestais no país através de dados coletados, em áreas protegidas, no período de 1994 a 1997, através de formulários preenchidos por empresas e instituições florestais. Foram registrados e informados 1.957 incêndios e apesar deste número não representar a totalidade dos incêndios ocorridos no período estudado, constituiu-se numa base confiável para se conhecer as principais características dos incêndios. Os resultados mostraram que a área média atingida por incêndio no período analisado foi de aproximadamente 135 ha, sendo Minas Gerais o estado líder, tanto em número de incêndios informados (62,7% do total) como em área queimada (25,2%). O grupo Incendiários foi a principal causa dos incêndios, com 56,6% das ocorrências, vindo a seguir as Queimas para limpeza com 22,1%. Com relação à área queimada o grupo Queimas para limpeza , com 74,1% da superfície atingida, foi a principal causa, ficando o grupo Incendiários em segundo lugar com 19,8%. A principal estação de incêndios no país se estende de julho a novembro, quando ocorreram 79,2% dos incêndios, correspondendo a 98,6% da área atingida. O maior número de incêndios (39,7% das ocorrências) foi registrado em Outro tipo de vegetação, que inclui cerrado, capoeira e campo. Com relação à área atingida, entretanto, 92,5% foi registrada em Florestas Nativas. Quanto à distribuição dos incêndios através das classes de tamanho, 23,9% foi enquadrado na classe I ( 0,1 ha). É importante ressaltar que quanto maior a eficiência no combate aos incêndios, maior é a concentração dos mesmos na classe I. Apesar de corresponder a apenas 2,4% das ocorrências, os incêndios da classe V ( 200,0 ha) foram responsáveis por 94,5% da área queimada. FOREST FIRE STATISTICS IN BRAZIL FROM 1994 TO 1997 Abstract Forest fire statistics knowledge is an important tool for fire control planning. The objective of this research was to collect information on forest fire occurrence in Brazilian protected areas in the period of 1994 to 1997. The analyzed variables were the number of fires and burned areas per state of the federation, monthly distribution, probable causes, affected vegetation, size class distribution, and average burned area per fire. Results showed that the average burned area per fire was approximately 135 ha and Minas Gerais ranked first, both in number of registered fires (62.7%) and burned surface (25.2%). Incendiary, with 56.6% of the occurrences was the leading cause, followed by debris burning with 22.1%. However, as for the affected area, Debris burning was the leading cause (74.1%), followed by Incendiary (19.8%). The fire season extends from July to November, when 79.2% of the fires occurred, corresponding to 98.6% of the burned surface. Miscellaneous, that includes savanna, secondary growth forest, and grassland were the most affected vegetation type (39.7% of the occurrences). In relation to the burned surface, Native Forest (92.5%) ranked first. The distribution of the registered fires through the size classes presented 23.9% of the occurrences in Class I ( 0.1 ha), whereas 94.5% of the burned area were result of Class V ( 200 ha) fires. Size Class II (0.1 to 4.0 ha), with 49.1% of the occurrences, ranked first in number of registered fires during the analyzed period.


2010 ◽  
Vol 10 (5) ◽  
pp. 2335-2351 ◽  
Author(s):  
D. Chang ◽  
Y. Song

Abstract. Biomass burning in tropical Asia emits large amounts of trace gases and particulate matter into the atmosphere, which has significant implications for atmospheric chemistry and climatic change. In this study, emissions from open biomass burning over tropical Asia were evaluated during seven fire years from 2000 to 2006 (1 March 2000–31 February 2007). The size of the burned areas was estimated from newly published 1-km L3JRC and 500-m MODIS burned area products (MCD45A1). Available fuel loads and emission factors were assigned to each vegetation type in a GlobCover characterisation map, and fuel moisture content was taken into account when calculating combustion factors. Over the whole period, both burned areas and fire emissions showed clear spatial and seasonal variations. The size of the L3JRC burned areas ranged from 36 031 km2 in fire year 2005 to 52 303 km2 in 2001, and the MCD45A1 burned areas ranged from 54 790 km2 in fire year 2001 to 148 967 km2 in 2004. Comparisons of L3JRC and MCD45A1 burned areas using ground-based measurements and other satellite data were made in several major burning regions, and the results suggest that MCD45A1 generally performed better than L3JRC, although with a certain degree of underestimation in forest areas. The average annual L3JRC-based emissions were 123 (102–152), 12 (9–15), 1.0 (0.7–1.3), 1.9 (1.4–2.6), 0.11 (0.09–0.12), 0.89 (0.63–1.21), 0.043 (0.036–0.053), 0.021 (0.021–0.023), 0.41 (0.34–0.52), 3.4 (2.6–4.3), and 3.6 (2.8–4.7) Tg yr−1 for CO2, CO, CH4, NMHCs, NOx, NH3, SO2, BC, OC, PM2.5, and PM10, respectively, whereas MCD45A1-based emissions were 122 (108–144), 9.3 (7.7–11.7), 0.63 (0.46–0.86), 1.1 (0.8–1.6), 0.11 (0.10–0.13), 0.54 (0.38–0.76), 0.043 (0.038–0.051), 0.033 (0.032–0.037), 0.39 (0.34–0.47), 3.0 (2.6–3.7), and 3.3 (2.8–4.0) Tg yr−1. Forest burning was identified as the major source of the fire emissions due to its high carbon density. Although agricultural burning was the second highest contributor, it is possible that some crop residue combustion was missed by satellite observations. This possibility is supported by comparisons with previously published data, and this result may be due to the small size of the field crop residue burning. Fire emissions were mainly concentrated in Indonesia, India, Myanmar, and Cambodia. Furthermore, the peak in the size of the burned area was generally found in the early fire season, whereas the maximum fire emissions often occurred in the late fire season.


Sign in / Sign up

Export Citation Format

Share Document