scholarly journals Experimental study of the impact response of geocells as components of rockfall protection embankments

2009 ◽  
Vol 9 (2) ◽  
pp. 459-467 ◽  
Author(s):  
S. Lambert ◽  
P. Gotteland ◽  
F. Nicot

Abstract. Rockfall protection embankments are ground levees designed to stop falling boulders. This paper investigates the behaviour of geocells to be used as components of these structures. Geocells, or cellular confinement systems, are composite structures associating a manufactured envelope with a granular geomaterial. Single cubic geocells were subjected to the impact resulting from dropping a spherical boulder. The geocells were filled with fine or coarse materials and different boundary conditions were applied on the lateral faces. The response is analysed in terms of the impact force and the force transmitted by the geocell to its rigid base. The influence on the geocell response of both the fill material and the cell boundary conditions is analysed. The aim was to identify the conditions resulting in greatest reduction of the transmitted force and also to provide data for the validation of a specific numerical model.

2021 ◽  
Vol 2021 (11) ◽  
pp. 12-19
Author(s):  
Albert Korolev ◽  
Anastasia Panfilova ◽  
Boris Iznairov ◽  
Olga Reshetnikova ◽  
Viktorya Pavlova

A new purifying method of metal surface cleaning from oxide scale using a special rotating edge tool is described, which allows to solve the problem of increasing the extent of surface purification from oxide scale more efficiently, reliably and effectively. The process of the surface cleaning of flat- rolled products used for the manufacture of hollow sheres from oxide scale by mechanical action of a cutting tool on various layers of oxide scale is simulated. The force required to shift an oxide scale and the boundary conditions of the ratio hold-down pressure of the tool to the workpiece, the friction force in the tool support and the impact force of the scale on the tool, at which it is possible to remove the scale from the rolled surface, are determined.


2013 ◽  
Vol 462-463 ◽  
pp. 428-431
Author(s):  
Liang Cai Xiong ◽  
Quan Sheng Zhou ◽  
Peng Chen

The dynamic response of different micro-beams after laser excitation experiments have been investigated in this paper. The impact force that induces the vibration of micro-beams is the interaction of focused pulse laser and tested beams. The impact response of micro-beams after being excited is measured by Laser Doppler Vibrometer. Different beams such as cantilever beam, L-shaped beam are employed in our experiments. Comparisons of the vibration velocity and its frequencies of different beams have also been performed. Experimental results show that the mechanical effects of laser shock do really exist and can be utilized.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Jianli Wu ◽  
Guotao Ma ◽  
Zhenhua Zhou ◽  
Xuefeng Mei ◽  
Xiewen Hu

The impact response of reinforced-concrete (RC) slabs covered with a sandy soil cushion layer was investigated using an outdoor rockfall impact test platform. Impact tests were carried out by releasing rockfalls with different weights from different heights to impact a combined structure. Test data included the acceleration duration curve of the rockfall, strain of the concrete slab at multiple measuring points, and midpoint displacement duration curve of the slab. The test results showed an exponential relationship between the impact force acting on the cushion layer surface and cushion layer thickness. An empirical formula was used to calculate the maximum penetration, and the result was in good agreement with the test value. In addition, the attenuation rate of the impact force acting on the cushion layer increased exponentially with the increase in the cushion layer thickness, and the peak impact force could be attenuated by approximately 70% at a thickness of 0.6 m. Finally, the failure process and failure modes of the RC slabs were investigated.


Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2087 ◽  
Author(s):  
Norberto Feito ◽  
José Antonio Loya ◽  
Ana Muñoz-Sánchez ◽  
Raj Das

In this study, the effect of the impact angle of a projectile during low-velocity impact on Kevlar fabrics has been investigated using a simplified numerical model. The implementation of mesoscale models is complex and usually involves long computation time, in contrast to the practical industry needs to obtain accurate results rapidly. In addition, when the simulation includes more than one layer of composite ply, the computational time increases even in the case of hybrid models. With the goal of providing useful and rapid prediction tools to the industry, a simplified model has been developed in this work. The model offers an advantage in the reduced computational time compared to a full 3D model (around a 90% faster). The proposed model has been validated against equivalent experimental and numerical results reported in the literature with acceptable deviations and accuracies for design requirements. The proposed numerical model allows the study of the influence of the geometry on the impact response of the composite. Finally, after a parametric study related to the number of layers and angle of impact, using a response surface methodology, a mechanistic model and a surface diagram have been presented in order to help with the calculation of the ballistic limit.


2018 ◽  
Vol 789 ◽  
pp. 155-160
Author(s):  
Yi Ou Shen ◽  
Yan Li

In this study, target size effects in the low energy impact response of plain CFRP plateswere investigated. It was found that increase the target size leads to a reduction in the maximumimpact force recorded during the test. This is due to the reduction on flexural rigidity of the largerpanels. The experimental results indicated that at energies above the first failure threshold, themaximum impact force does not coincidence with the predicting value. Two mathematical modelswere used to predict the maximum impact force including single degree of freedom (SDOF)spring-mass model and Energy-Balance (E-B) model. The predicting results were then comparedwith the experimental results, and both of the two models show good agreement with theexperimental results in elastic deformation region. In addition, the level of agreement between thepredictions and the experimental results indicate that both models are capable of modelling theimpact response of these CFRP panels at elastic regime.


2014 ◽  
Vol 587-589 ◽  
pp. 1547-1553 ◽  
Author(s):  
Jun Jie Wang ◽  
Zhi Ran Yu

Due to the complexity involved and limited study on the topic, the equivalent static method, adopted in the current codes for structural design of bridges under ship collisions, does not take into account the dynamic amplification effect correctly. An accurate assessment of impact force based on refined numerical simulation is time consuming and is normally too complex for ordinary design procedure. Herein, with reference to the earthquake response spectrum method, an impact response spectrum method, which considers the dynamic amplification effect and is efficient for design, is proposed. Through refined numerical simulations of ship-rigid wall collisions, 81 impact force time histories associated with 9 typical ships under 9 velocities are obtained. The dynamic magnification factor (DMF) of single-degree-of-freedom (SDOF) systems with different periods and damping ratios experiencing the 81 impact force time histories are then studied. The relationship of DMF and period under different damping ratios, i.e. the DMF spectrum, is yielded by statistical analysis, based on which the impact response spectrum is obtained. Finally, the design combination method for multi-degree-of-freedom based on the impact response spectrum of SDOF is discussed for a continuous beam bridge.


Author(s):  
Ahmet S. Yigit ◽  
Andreas P. Christoforou

Abstract The nature of impact response of a flexible body is studied. The key parameters which govern the nature of impact response are identified. The effects of these parameters on the impact response are examined through numerical simulations. It is shown that the normalized impact force and the type of impact response can be predicted through the functional relationship between the normalized maximum impact force and two nondimensional parameters termed as “loss factor” and “relative stiffness”. It is expected that the results of this study will be of great value in choosing adequate impact and computational models for the dynamic analysis of multibody systems subject to transverse impacts.


2010 ◽  
Vol 168-170 ◽  
pp. 1149-1152
Author(s):  
Xiao Xiong Zha ◽  
Hong Xin Wang

The low velocity impact response of sandwich panels at different energy levels has been investigated by conducting drop-weight impact tests using an instrumented falling-weight impact tower. Impact parameters like maximum impact force and the extent of the damage were evaluated and compared for different types of sandwich panels. Finite elements simulations have been undertaken using the LS-DYNA software; the results of FE simulations have a good agreement with the experiments. It shows that, the impact force increased with thickness of face-sheets and foam core, the extent of the damage increased with the impact energy, sandwich panels with steel face sheet has a good impact resistance in comparison with sandwich panel with aluminum face sheets.


2017 ◽  
Vol 29 (3) ◽  
pp. 613-618
Author(s):  
Sa-nga Songmuang ◽  
◽  
Akihiro Takita ◽  
Suphanchai Punthawanunt ◽  

[abstFig src='/00290003/16.jpg' width='300' text='The changes impact force to the sheet' ] A method for measuring the impact response of a polyurethane sheet is proposed. In the method, the velocity, acceleration, force, and displacement of a spherical body dropping onto the polyurethane sheet is measured using an optical interferometer. Only the velocity is measured from the Doppler shift of the laser light reflected on the cube corner prism embedded inside the spherical body. The optical center of the cube corner prism is made to coincide with the center of gravity of the whole spherical body to minimize the effect of the attitude change of the body. The acceleration, displacement, and inertial force of the body are calculated from the velocity. The dropping body is also observed using a high-speed camera. The uncertainty in measuring the instantaneous value of the impact force with a sampling interval of approximately 0.1 ms is estimated to be 0.23 N, which corresponds to 0.14% of the maximum force of approximately 1.60×102N. In the experiment, 10 drop measurements are conducted and show good reproducibility of this method.


Sign in / Sign up

Export Citation Format

Share Document